Graph Neural Network (GNN) in Image and Video Understanding Using Deep Learning for Computer Vision Applications

计算机科学 分类 人工智能 直觉 卷积神经网络 图形 上下文图像分类 深度学习 机器学习 人工神经网络 视觉对象识别的认知神经科学 计算机视觉 模式识别(心理学) 特征提取 图像(数学) 理论计算机科学 认识论 哲学
作者
P Pradhyumna,G. Shreya,Mohana
出处
期刊:2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) 卷期号:: 1183-1189 被引量:58
标识
DOI:10.1109/icesc51422.2021.9532631
摘要

Graph neural networks (GNNs) is an information - processing system that uses message passing among graph nodes. In recent years, GNN variants including graph attention network (GAT), graph convolutional network (GCN), and graph recurrent network (GRN) have shown revolutionary performance in computer vision applications using deep learning and artificial intelligence. These neural network model extensions, collect information in the form of graphs. GNN may be divided into three groups based on the challenges it solves: link prediction, node classification, graph classification. Machines can differentiate and recognise objects in image and video using standard CNNs. Extensive amount of research work needs to be done before robots can have same visual intuition as humans. GNN architectures, on the other hand, may be used to solve various image categorization and video challenges. The number of GNN applications in computer vision not limited, continues to expand. Human-object interaction, actin understanding, image categorization from a few shots and many more. In this paper use of GNN in image and video understanding, design aspects, architecture, applications and implementation challenges towards computer vision is described. GNN is a strong tool for analysing graph data and is still a relatively active area that needs further researches attention to solve many computer vision applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Guoji_Huang采纳,获得10
刚刚
黑米粥完成签到,获得积分0
刚刚
碧蓝难胜发布了新的文献求助10
2秒前
3秒前
3秒前
幸福广山发布了新的文献求助10
4秒前
好耶完成签到 ,获得积分10
4秒前
5秒前
5秒前
完美的书雁完成签到 ,获得积分10
5秒前
夏xia完成签到,获得积分10
5秒前
徐婷完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
李爱国应助心灵美的白卉采纳,获得10
8秒前
8秒前
椒盐丸子完成签到,获得积分10
8秒前
海风吹发布了新的文献求助10
9秒前
DCW发布了新的文献求助10
9秒前
杨旭完成签到,获得积分10
9秒前
9秒前
Hello应助怕黑的丝袜采纳,获得10
9秒前
领导范儿应助八宝采纳,获得10
9秒前
傲娇老五完成签到 ,获得积分10
9秒前
碧蓝难胜完成签到,获得积分10
10秒前
金戈完成签到,获得积分10
10秒前
11秒前
12秒前
qianqina发布了新的文献求助30
12秒前
13秒前
13秒前
13秒前
英俊的铭应助闪闪凝冬采纳,获得10
14秒前
希望天下0贩的0应助Dr.Liu采纳,获得10
14秒前
xgx984完成签到,获得积分10
15秒前
15秒前
开放如天发布了新的文献求助10
15秒前
15秒前
yuan应助zzzwwwkkk采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831