A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis

人工智能 计算机科学 深度学习 学习迁移 自编码 原始数据 断层(地质) 人工神经网络 滤波器(信号处理) 机器学习 代表(政治) 编码器 模式识别(心理学) 试验数据 数据挖掘 地质学 计算机视觉 地震学 操作系统 政治 政治学 程序设计语言 法学
作者
Long Wen,Liang Gao,Xinyu Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 136-144 被引量:932
标识
DOI:10.1109/tsmc.2017.2754287
摘要

Fault diagnosis plays an important role in modern industry. With the development of smart manufacturing, the data-driven fault diagnosis becomes hot. However, traditional methods have two shortcomings: 1) their performances depend on the good design of handcrafted features of data, but it is difficult to predesign these features and 2) they work well under a general assumption: the training data and testing data should be drawn from the same distribution, but this assumption fails in many engineering applications. Since deep learning (DL) can extract the hierarchical representation features of raw data, and transfer learning provides a good way to perform a learning task on the different but related distribution datasets, deep transfer learning (DTL) has been developed for fault diagnosis. In this paper, a new DTL method is proposed. It uses a three-layer sparse auto-encoder to extract the features of raw data, and applies the maximum mean discrepancy term to minimizing the discrepancy penalty between the features from training data and testing data. The proposed DTL is tested on the famous motor bearing dataset from the Case Western Reserve University. The results show a good improvement, and DTL achieves higher prediction accuracies on most experiments than DL. The prediction accuracy of DTL, which is as high as 99.82%, is better than the results of other algorithms, including deep belief network, sparse filter, artificial neural network, support vector machine and some other traditional methods. What is more, two additional analytical experiments are conducted. The results show that a good unlabeled third dataset may be helpful to DTL, and a good linear relationship between the final prediction accuracies and their standard deviations have been observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dildil发布了新的文献求助10
1秒前
蓝天0812发布了新的文献求助10
1秒前
喜悦的飞飞完成签到,获得积分10
1秒前
4秒前
科研助手6应助xzn采纳,获得10
4秒前
5秒前
阿飞完成签到,获得积分10
5秒前
6秒前
木木木完成签到 ,获得积分10
6秒前
有魅力的臻完成签到,获得积分10
7秒前
玛珂巴巴珂完成签到,获得积分10
7秒前
蘑菇屋应助豆浆烩面采纳,获得10
7秒前
8秒前
莫妮卡完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
喝醉酒的猫完成签到,获得积分10
10秒前
月月发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助yi采纳,获得10
13秒前
隐形觅翠完成签到,获得积分10
13秒前
左辄完成签到,获得积分10
13秒前
炙热芷蕊完成签到,获得积分20
14秒前
李健的小迷弟应助yelis采纳,获得10
21秒前
22秒前
22秒前
28秒前
慕青应助仲半邪采纳,获得10
29秒前
豆浆烩面完成签到,获得积分10
30秒前
SciGPT应助美满筮采纳,获得10
31秒前
Yiy完成签到 ,获得积分0
32秒前
ZhouYW应助科研通管家采纳,获得10
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
深情安青应助科研通管家采纳,获得10
33秒前
ZhouYW应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
ZhouYW应助科研通管家采纳,获得10
33秒前
CipherSage应助小扇采纳,获得10
35秒前
luwei0618发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814439
求助须知:如何正确求助?哪些是违规求助? 3358522
关于积分的说明 10395901
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 813027
科研通“疑难数据库(出版商)”最低求助积分说明 767439