亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TSMAE: A Novel Anomaly Detection Approach for Internet of Things Time Series Data Using Memory-Augmented Autoencoder

自编码 计算机科学 异常检测 外部数据表示 人工智能 数据挖掘 特征向量 特征(语言学) 解码方法 一般化 模式识别(心理学) 机器学习 深度学习 算法 数学 语言学 数学分析 哲学
作者
Honghao Gao,Binyang Qiu,Ramón J. Durán Barroso,Walayat Hussain,Yueshen Xu,Xinheng Wang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2978-2990 被引量:163
标识
DOI:10.1109/tnse.2022.3163144
摘要

With the development of communication, the Internet of Things (IoT) has been widely deployed and used in industrial manufacturing, intelligent transportation, and healthcare systems. The time-series feature of the IoT increases the data density and the data dimension, where anomaly detection is important to ensure hardware and software security. However, for the general anomaly detection methods, the anomaly may be well-reconstructed with tiny differences that are hard to discover. Measuring model complexity and the dataset feature space is a long and inefficient process. In this paper, we propose a memory-augmented autoencoder approach for detecting anomalies in IoT data, which is unsupervised, end-to-end, and not easily overgeneralized. First, a memory mechanism is introduced to suppress the generalization ability of the model, and a memory-augmented time-series autoencoder (TSMAE) is designed. Each memory item is encoded and recombined according to the similarity with the latent representation. Then, the new representation is decoded to generate the reconstructed sample, based on which the anomaly score can be obtained. Second, the addressing vector tends to be sparse by adding penalties and rectification functions to the loss. Memory modules are encouraged to extract typical normal patterns, thus inhibiting model generalization ability. Long short-term memory (LSTM) is introduced for decoding and encoding time-series data to obtain the contextual characteristics of time-series data. Finally, through experiments on the ECG and Wafer datasets, the validity of the TSMAE is verified. The rationality of the hyperparameter setting is discussed by visualizing the memory module addressing vector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助白巧小丸子采纳,获得10
14秒前
Ghiocel完成签到,获得积分10
17秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
19秒前
Sailzyf完成签到,获得积分10
27秒前
Ava应助白巧小丸子采纳,获得10
34秒前
36秒前
赘婿应助科研通管家采纳,获得10
38秒前
小马甲应助科研通管家采纳,获得10
38秒前
乐乐应助HSA采纳,获得50
43秒前
华仔应助二十八画生采纳,获得10
49秒前
在水一方应助白巧小丸子采纳,获得10
51秒前
欢喜发卡完成签到,获得积分10
54秒前
55秒前
58秒前
1分钟前
---发布了新的文献求助30
1分钟前
ding应助嘉禾瑶采纳,获得10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Gaopkid采纳,获得10
1分钟前
1分钟前
嘉禾瑶发布了新的文献求助10
1分钟前
1分钟前
1分钟前
愉快的问安完成签到,获得积分10
1分钟前
Gaopkid发布了新的文献求助10
1分钟前
HSA发布了新的文献求助50
1分钟前
herococa完成签到,获得积分0
1分钟前
沉默白桃完成签到 ,获得积分10
1分钟前
LC完成签到 ,获得积分10
1分钟前
1分钟前
在水一方应助雪衣豆沙采纳,获得10
2分钟前
ljl86400完成签到,获得积分10
2分钟前
2分钟前
我是老大应助Gaopkid采纳,获得10
2分钟前
深情安青应助momo123采纳,获得10
2分钟前
2分钟前
2分钟前
Gaopkid发布了新的文献求助10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931053
求助须知:如何正确求助?哪些是违规求助? 3475954
关于积分的说明 10988830
捐赠科研通 3206216
什么是DOI,文献DOI怎么找? 1771847
邀请新用户注册赠送积分活动 859253
科研通“疑难数据库(出版商)”最低求助积分说明 797053