High-resolution planet satellite imagery and multi-temporal surveys to predict risk of tree mortality in tropical eucalypt forestry

归一化差异植被指数 植被(病理学) 卫星图像 地理 气候变化 环境科学 逻辑回归 自然地理学 气候学 林业 遥感 生态学 统计 数学 地质学 生物 医学 病理
作者
Adrián Pascual,Frederico Tupinambá‐Simões,Juan Guerra-Hernández,Felipe Bravo
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:310: 114804-114804 被引量:23
标识
DOI:10.1016/j.jenvman.2022.114804
摘要

Global high-resolution imagery is a well-assimilated technology in forest mapping. The release of the Norway's International Climate & Forests Initiative (NICFI) Planet tropical basemaps time-series starting in 2015 at a 4.77-m resolution represents a unique opportunity to forecast climate change consequences such as drought episodes. Using multi-temporal ground surveys over 144 plots and publicly available high-resolution Planet dove time-series imagery we evaluate forest mortality patterns driven by imaging spectroscopy methods in Mato Grosso (Brazil) over an area planted with eucalypts severely affected by the 2019 drought. Changes in vegetation indexes before and after the 2019 drought were modelled using the effective logistic regression modelling to explain variation in tree mortality between the surveys, the dependent variable. We aimed to straightforwardly model tree mortality using change vectors in Planet's image mosaics co-registering in time with the observed tree mortality measurements in the field. The results showed differences in Normalized Difference Vegetation Index (NDVI) as the most significant predictor variable under the effective logistic regression modelling performed. The efficacy of 80.98% in concordance pairs correctly classified represented 0.81 of area under the Receiver Operating Curve (ROC). The release of the 2015-2020 Planet imagery in the tropics at 4.77-m resolution represents a valuable dataset to better understand previous natural disturbances and a powerful technology to detect in advance, and monthly after September 2020, eucalypt areas prone to harmful and increasingly frequent water-stress episodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南枝焙雪完成签到 ,获得积分10
1秒前
清爽老九发布了新的文献求助10
2秒前
lmg关注了科研通微信公众号
2秒前
星辰大海应助竹园采纳,获得10
2秒前
大胆的胜发布了新的文献求助10
3秒前
小天完成签到,获得积分10
4秒前
SciGPT应助帆帆牛采纳,获得30
4秒前
无私的定帮完成签到,获得积分10
5秒前
木子雨完成签到 ,获得积分10
6秒前
yn107发布了新的文献求助10
7秒前
洛洛发布了新的文献求助10
8秒前
8秒前
丘比特应助虚幻的小海豚采纳,获得10
9秒前
9秒前
深情安青应助舒心的雨双采纳,获得10
9秒前
8R60d8应助hh采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
李健应助整齐唯雪采纳,获得10
13秒前
lJH发布了新的文献求助10
13秒前
南风上北山完成签到,获得积分10
14秒前
余俊杰完成签到 ,获得积分10
15秒前
酷波er应助xiaohansan采纳,获得10
15秒前
liman发布了新的文献求助10
15秒前
16秒前
科研通AI5应助周跃扬采纳,获得10
17秒前
18秒前
Lsx完成签到 ,获得积分10
18秒前
19秒前
SWJ完成签到,获得积分10
21秒前
慕青应助licaiwsk采纳,获得10
22秒前
23秒前
23秒前
情怀应助zhangxinan采纳,获得10
23秒前
量子星尘发布了新的文献求助150
24秒前
morena应助吱吱采纳,获得30
24秒前
24秒前
lmg完成签到,获得积分10
24秒前
26秒前
赘婿应助yn107采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096447
求助须知:如何正确求助?哪些是违规求助? 4309168
关于积分的说明 13426309
捐赠科研通 4136267
什么是DOI,文献DOI怎么找? 2266010
邀请新用户注册赠送积分活动 1269252
关于科研通互助平台的介绍 1205492