Cancer MiRNA biomarker classification based on Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm

人工智能 计算机科学 深度学习 卷积神经网络 机器学习 模式识别(心理学)
作者
G. Tamilmani,V. Brindha Devi,T. Sujithra,Francis H. Shajin,P. Rajesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103545-103545 被引量:19
标识
DOI:10.1016/j.bspc.2022.103545
摘要

Nowadays, cancer diagnosis becomes a paradigm shift by incorporating molecular biomarkers as part of a routine diagnostic panel. Ranges of molecular changes include DNA, RNA, micro RNA (miRNAs) and proteins. In recent years, deep learning based methods have been more inspired to health researcher’s regarding the performance of cancer diagnosis. The application of deep learning-based approach gradually becomes clearer in classification accuracy for a problem that separates data related to cancer survival. In this manuscript, an Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm is proposed to overcome the super class issues. Improved Generative Adversarial Network is the combination of deep convolutional generative adversarial network (DCG) and modified convolutional neural network (MCNN); hence it is called DCG-MCNN. Initially, the DCG is used to balance the dataset by creating more samples in the training dataset. Based on the training dataset, cancer miRNA biomarker classification is improved with the help of modified CNN diagnosis model. The proposed method is activated in python, moreover, its efficiency is analyzed with Cancer Genome Atlas dataset. Here, performance metrics, viz accuracy, sensitivity, specificity, precision, F-measure balanced error rate are calculated. The experimental results of the proposed method shows higher accuracy 99.26%, higher sensitivity 95.23%, higher specificity 92.56% compared with the existing methods, like Validation of miRNAs as breast cancer biomarkers with a machine learning approach (CMiRNA-BC-RF-SVM), Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning (CMiRNA-BC-CNN) and multi-omics data using graph convolutional networks allowing patient classification and biomarker identification (CMiRNA-BC-GCNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lily完成签到,获得积分10
刚刚
123完成签到,获得积分20
刚刚
1秒前
余呀余完成签到 ,获得积分10
1秒前
爆米花应助淡然的小霸王采纳,获得10
1秒前
粗心小熊猫完成签到,获得积分10
1秒前
天真的冥王星完成签到,获得积分10
2秒前
Leucalypt完成签到,获得积分10
2秒前
storm完成签到 ,获得积分10
2秒前
cwm完成签到,获得积分10
2秒前
2秒前
2秒前
Pyrene完成签到,获得积分10
3秒前
W23完成签到,获得积分20
3秒前
柯同发布了新的文献求助10
4秒前
5秒前
5秒前
NexusExplorer应助sghpv采纳,获得10
5秒前
粗心的飞槐完成签到 ,获得积分10
5秒前
SAODEN完成签到,获得积分10
6秒前
一秒的剧情完成签到,获得积分10
6秒前
6秒前
zee发布了新的文献求助10
6秒前
ALU完成签到 ,获得积分10
6秒前
沉默思山完成签到,获得积分10
7秒前
taowang完成签到,获得积分10
7秒前
7秒前
7秒前
倩倩发布了新的文献求助10
7秒前
柯同完成签到,获得积分10
8秒前
DHB完成签到,获得积分10
8秒前
8秒前
张楠发布了新的文献求助10
9秒前
又声发布了新的文献求助10
9秒前
荷戟执子手完成签到,获得积分10
9秒前
彭于彦祖应助SHI采纳,获得10
10秒前
10秒前
qy完成签到,获得积分10
10秒前
daqing发布了新的文献求助10
11秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733