岩土工程
背景(考古学)
利用
数据科学
数字化转型
计算机科学
工程类
工程伦理学
人工智能
知识管理
地质学
土木工程
万维网
计算机安全
古生物学
作者
Kok‐Kwang Phoon,Wengang Zhang
标识
DOI:10.1080/17499518.2022.2087884
摘要
Machine learning (ML) is widely used in many industries, resulting in recent interests to explore ML in geotechnical engineering. Past review papers focus mainly on ML algorithms while this paper advocates an agenda to put data at the core, to develop novel algorithms that are effective for geotechnical data (existing and new), to address the needs of current practice, to exploit new opportunities from emerging technologies or to meet new needs from digital transformation, and to take advantage of current knowledge and accumulated experience. This agenda is called data-centric geotechnics and it contains three core elements: data centricity, fit for (and transform) practice, and geotechnical context. The future of machine learning in geotechnics should be envisioned with this “data first practice central” agenda in mind. Data-driven site characterization (DDSC) is an active research topic in this agenda because an understanding of the ground is crucial in all projects. Examples of DDSC challenges are ugly data and explainable site recognition. Additional challenges include making ML indispensable (ML supremacy), learning how to learn (meta-learning), and becoming smart (digital twin).
科研通智能强力驱动
Strongly Powered by AbleSci AI