A genetic algorithm with jumping gene and heuristic operators for traveling salesman problem

旅行商问题 渡线 适应度比例选择 数学优化 局部最优 遗传算子 人口 启发式 遗传算法 操作员(生物学) 计算机科学 轮盘赌 局部搜索(优化) 早熟收敛 算法 适应度函数 数学 人工智能 基于群体的增量学习 生物化学 化学 人口学 几何学 抑制因子 社会学 转录因子 基因
作者
Panli Zhang,Jiquan Wang,Zhanwei Tian,Sun Shengzhi,Jianting Li,Jingnan Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:127: 109339-109339 被引量:34
标识
DOI:10.1016/j.asoc.2022.109339
摘要

Aiming at the problems of slow convergence speed, low solution quality, and easily falling into a local optimum in solving traveling salesman problem (TSP) with genetic algorithm (GA), a genetic algorithm with jumping gene and heuristic operators (GA-JGHO) is proposed, which contains five modifications: (1) an improved roulette selection of combined fitness function is proposed to maintain population diversity and strengthen the exploitation ability, which is helpful to overcome the low population diversity with the standard roulette selection; (2) a bidirectional heuristic crossover (BHX) operator is proposed, which aims to increase the possibility of the potential offspring produced by crossover operation; (3) the combination mutation operator is presented to balance the exploration and exploitation ability; (4) a jumping gene operator is designed, which is beneficial to expand the searching space and reduce the possibility of falling into a local optimum; (5) a unique operator is added to avoid the occurrence of nimiety identical individuals in the population. Besides, the local search operator is integrated to enhance exploitation ability. Moreover, a large number of instances from TSPLIB and a real-world path optimization problem of the cruise robot are selected to verify the validity of the modifications and the potential of GA-JGHO. Experimental results and statistical analyses demonstrate that GA-JGHO performs better in quality stability, accuracy, and convergence speed compared with the other six algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助朴实的新之采纳,获得10
刚刚
2秒前
ding应助hadern采纳,获得10
2秒前
2秒前
linzy发布了新的文献求助10
2秒前
默幻弦完成签到,获得积分10
3秒前
酷炫的春天完成签到,获得积分10
3秒前
yyg发布了新的文献求助10
4秒前
zhentg完成签到,获得积分10
5秒前
上官若男应助Peng采纳,获得10
5秒前
7秒前
152455完成签到 ,获得积分10
9秒前
大意的晓亦完成签到 ,获得积分10
10秒前
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
许甜甜鸭应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
无曲应助科研通管家采纳,获得10
11秒前
无曲应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
LL完成签到,获得积分10
12秒前
14秒前
15秒前
15秒前
MMM完成签到 ,获得积分10
19秒前
邵邵发布了新的文献求助10
19秒前
20秒前
wks666666完成签到,获得积分10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825640
求助须知:如何正确求助?哪些是违规求助? 3367823
关于积分的说明 10447914
捐赠科研通 3087251
什么是DOI,文献DOI怎么找? 1698546
邀请新用户注册赠送积分活动 816807
科研通“疑难数据库(出版商)”最低求助积分说明 769973