Non-contact detection of railhead defects and their classification by using convolutional neural network

卷积神经网络 人工智能 计算机科学 人工神经网络 分类 支持向量机 超声波传感器 模式识别(心理学) 计算机视觉 声学 物理
作者
Imran Ghafoor,Peter W. Tse,Nauman Munir,Amy J.C. Trappey
出处
期刊:Optik [Elsevier BV]
卷期号:253: 168607-168607 被引量:13
标识
DOI:10.1016/j.ijleo.2022.168607
摘要

Railhead defects must be detected and classified intelligently in order for railway transportation systems to operate safely. Rail defect identification and categorization can be automated by using machine learning models to process rail image data (acquired using cameras). However, such an automated method has significant drawbacks: it cannot detect subsurface defects, picture data requires a high-end GPU with a long computational time, and machine learning model training can be influenced by image quality, which is dependent on light intensity and shooting altitude. Rayleigh waves are a potential candidate for rail inspection because they can detect both surface and subsurface defects and travel long distances on curved surfaces (like a rail) at high speed. This article looks into the possibility of combining fully non-contact laser ultrasonic technology (LUT) and a deep learning approach for intelligent detection and classification of railhead surface and subsurface defects. The fully non-contact LUT was used to actuate and capture laser-generated Rayleigh wave signals on railhead specimens in order to create a database of A-scan signals from healthy, surface, subsurface, and edge defect railheads. The classification capabilities of a support vector machine (SVM), a fully connected deep neural network (DNN), and a convolutional neural network (CNN) were examined after they were applied to the preprocessed signals without extracting any statistical/signal processing-based characteristics. The comparative analysis demonstrates that CNN is robust in classifying railhead defects. As a result, when combined with CNN, the laser ultrasonic technology may ensure automatic defection and classification of railhead surface and subsurface flaws.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
柚又完成签到 ,获得积分10
4秒前
默存完成签到,获得积分10
4秒前
指哪打哪完成签到,获得积分10
5秒前
灵犀完成签到,获得积分10
6秒前
子焱完成签到 ,获得积分10
9秒前
丘比特应助青青河边草采纳,获得10
10秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
11秒前
aimanqiankun55完成签到 ,获得积分10
12秒前
乐乐完成签到,获得积分10
13秒前
谨慎秋珊完成签到 ,获得积分10
14秒前
dara997完成签到,获得积分10
15秒前
yy完成签到 ,获得积分10
16秒前
鲲鹏完成签到 ,获得积分10
17秒前
闻屿完成签到,获得积分10
18秒前
勇往直前完成签到,获得积分10
19秒前
21秒前
23秒前
SciGPT应助Justtry采纳,获得10
26秒前
子羽完成签到,获得积分10
28秒前
小郭完成签到 ,获得积分10
28秒前
SRN发布了新的文献求助10
29秒前
缓慢的甜瓜完成签到,获得积分10
29秒前
张成完成签到 ,获得积分10
29秒前
巴山郎完成签到,获得积分10
31秒前
SJD完成签到,获得积分0
33秒前
剑圣不会斩完成签到,获得积分10
33秒前
太叔夜南完成签到,获得积分10
33秒前
巧克力完成签到 ,获得积分10
34秒前
张小七关注了科研通微信公众号
35秒前
无与伦比完成签到,获得积分10
36秒前
科研螺丝完成签到 ,获得积分10
36秒前
jlwang发布了新的文献求助10
36秒前
Thien应助科研通管家采纳,获得10
37秒前
爆米花应助科研通管家采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得30
37秒前
Thien应助科研通管家采纳,获得10
37秒前
38秒前
red发布了新的文献求助10
42秒前
从容傲柏完成签到,获得积分10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301167
捐赠科研通 3057247
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626