心肌保护
缺血预处理
安普克
巨噬细胞移动抑制因子
再灌注损伤
离体
医学
缺血
药理学
炎症
内生
体内
蛋白激酶A
细胞生物学
激酶
内科学
生物
细胞因子
生物技术
作者
Amanguli Ruze,Bang‐Dang Chen,Fen Liu,Xiaocui Chen,Min‐Tao Gai,Xiao‐Mei Li,Yi‐Tong Ma,Xiao‐Jun Du,Yi‐Ning Yang,Xiao‐Ming Gao
出处
期刊:Clinical Science
[Portland Press]
日期:2019-02-25
卷期号:133 (5): 665-680
被引量:31
摘要
Ischemic preconditioning (IPC) is an endogenous protection strategy against myocardial ischemia-reperfusion (I/R) injury. Macrophage migration inhibitory factor (MIF) released from the myocardium subjected to brief periods of ischemia confers cardioprotection. We hypothesized that MIF plays an essential role in IPC-induced cardioprotection. I/R was induced either ex vivo or in vivo in male wild-type (WT) and MIF knockout (MIFKO) mice with or without proceeding IPC (three cycles of 5-min ischemia and 5-min reperfusion). Indices of myocardial injury, regional inflammation and cardiac function were determined to evaluate the extent of I/R injury. Activations of the reperfusion injury salvage kinase (RISK) pathway, AMP-activated protein kinase (AMPK) and their downstream components were investigated to explore the underlying mechanisms. IPC conferred prominent protection in WT hearts evidenced by reduced infarct size (by 33-35%), myocyte apoptosis and enzymatic markers of tissue injury, ROS production, inflammatory cell infiltration and MCP1/CCR2 expression (all P<0.05). IPC also ameliorated cardiac dysfunction both ex vivo and in vivo These protective effects were abolished in MIFKO hearts. Notably, IPC mediated further activations of RISK pathway, AMPK and the membrane translocation of GLUT4 in WT hearts. Deletion of MIF blunted these changes in response to IPC, which is the likely basis for the absence of protective effects of IPC against I/R injury. In conclusion, MIF plays a critical role in IPC-mediated cardioprotection under ischemic stress by activating RISK signaling pathway and AMPK. These results provide an insight for developing a novel therapeutic strategy that target MIF to protect ischemic hearts.
科研通智能强力驱动
Strongly Powered by AbleSci AI