亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On Learning 3D Face Morphable Model from In-the-wild Images

计算机科学 人工智能 面子(社会学概念) 渲染(计算机图形) 计算机视觉 可微函数 编码器 投影(关系代数) 非线性系统 面部识别系统 集合(抽象数据类型) 模式识别(心理学) 算法 数学 物理 数学分析 社会学 操作系统 量子力学 程序设计语言 社会科学
作者
Luan Tran,Xiaoming Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:57
标识
DOI:10.1109/tpami.2019.2927975
摘要

As a classic statistical model of 3D facial shape and albedo, 3D Morphable Model (3DMM) is widely used in facial analysis, e.g., model fitting, image synthesis. Conventional 3DMM is learned from a set of 3D face scans with associated well-controlled 2D face images, and represented by two sets of PCA basis functions. Due to the type and amount of training data, as well as, the linear bases, the representation power of 3DMM can be limited. To address these problems, this paper proposes an innovative framework to learn a nonlinear 3DMM model from a large set of in-the-wild face images, without collecting 3D face scans. Specifically, given a face image as input, a network encoder estimates the projection, lighting, shape and albedo parameters. Two decoders serve as the nonlinear 3DMM to map from the shape and albedo parameters to the 3D shape and albedo, respectively. With the projection parameter, lighting, 3D shape, and albedo, a novel analytically-differentiable rendering layer is designed to reconstruct the original input face. The entire network is end-to-end trainable with only weak supervision. We demonstrate the superior representation power of our nonlinear 3DMM over its linear counterpart, and its contribution to face alignment, 3D reconstruction, and face editing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
量子星尘发布了新的文献求助10
16秒前
Qing完成签到 ,获得积分10
37秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Criminology34应助科研通管家采纳,获得10
43秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
从前的我完成签到 ,获得积分10
49秒前
Wa1Zh0u发布了新的文献求助10
56秒前
1分钟前
研友_Zb17ln发布了新的文献求助10
1分钟前
null应助研友_Zb17ln采纳,获得10
1分钟前
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
wggggggy发布了新的文献求助10
2分钟前
思源应助zone54188采纳,获得10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
今后应助无情的琳采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
ding应助Wa1Zh0u采纳,获得30
4分钟前
无情的琳发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402