光伏系统
能量转换效率
材料科学
光电-热混合太阳能集热器
能量转换
散热片
太阳能
发电
建筑围护结构
核工程
工程物理
工艺工程
光电子学
机械工程
热的
电气工程
功率(物理)
工程类
气象学
物理
热力学
量子力学
作者
Dajiang Yang,Huiming Yin
标识
DOI:10.1109/tec.2011.2112363
摘要
A novel hybrid solar system has been designed to utilize photovoltaic (PV) cells, thermoelectric (TE) modules, and hot water (HW) through a multilayered building envelope. Water pipelines are cast within a functionally graded material layer to serve as a heat sink, allowing heat to be easily transferred into flowing water through an aluminum-rich surface, while remaining insulated by a polymer rich bottom. The theoretical energy conversion efficiency limit of the system has been investigated for documenting the potential of this hybrid solar panel design. Given the material properties of each layer, the actual energy conversion efficiency depends on the solar irradiation, ambient temperature, and water flow temperature. Compared to the traditional solar panel, this design can achieve better overall efficiencies with higher electrical power output and thermal energy utilization. Based on theoretical conversion efficiency limits, the PV/TE/HW system is superior to PV/HW and traditional PV systems with 30% higher output electrical power. However, the advantages of the PV/TE/HW system are not significant from experimental data due to the low efficiency of the bulk TE material. Thus, QW/QD TE materials are highly recommended to enhance the overall efficiency of the PV/TE/HW design. This design is general and open to new PV and TE materials with emerging nanotechnology for higher efficiencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI