材料科学
纳米孔
镍
电化学
纳米结构
阳极
化学工程
电动现象
电极
离子交换
纳米技术
离子
有机化学
物理化学
化学
工程类
冶金
标识
DOI:10.1002/adfm.200700015
摘要
Abstract Nickel hexacyanoferrate (NiHCF) nanotubes are fabricated by an electrokinetic method based on the distinct surface properties of porous anodic alumina. By this method, nanotubes can be formed rapidly with the morphologies faithfully replicating the nanopores in the template. The prepared nanotubes were carefully characterized using SEM and TEM. Results from IR, UV, EDX, and electrochemical measurements show that the NiHCF nanotubes exist only in the form of K 2 Ni[Fe(CN) 6 ]. Because of this single composition and unique nanostructure, NiHCF nanotubes show excellently stable cesium‐selective ion‐exchange ability. The capacity for electrodes modified with NiHCF nanotubes after 500 potential cycles retains 95.3 % of its initial value. Even after 1500 and 3000 cycles, the NiHCF nanotubes still retain 92.2 % and 82.9 %, respectively, of their ion‐exchange capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI