Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch

木质部 渗透压 枫木 生物物理学 管胞 蔗糖 化学 植物 薄壁组织 纤维 生物化学 生物 有机化学
作者
Damián Cirelli,Richard Jagels,Melvin T. Tyree
出处
期刊:Tree Physiology [Oxford University Press]
卷期号:28 (8): 1145-1155 被引量:61
标识
DOI:10.1093/treephys/28.8.1145
摘要

Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn-O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for molecules larger than 300 g mol(-1).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文子发布了新的文献求助10
刚刚
2秒前
liu发布了新的文献求助10
2秒前
JLGP发布了新的文献求助10
3秒前
John完成签到 ,获得积分10
5秒前
atropine发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
如意土豆完成签到 ,获得积分10
10秒前
天真的访天完成签到 ,获得积分10
13秒前
16秒前
英吉利25发布了新的文献求助10
16秒前
LL发布了新的文献求助10
20秒前
liuchang完成签到 ,获得积分10
20秒前
罗dd发布了新的文献求助10
21秒前
变化球完成签到,获得积分10
24秒前
LUYAO1完成签到 ,获得积分10
27秒前
chutai发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
姚雨轩完成签到 ,获得积分20
32秒前
卫夜天完成签到 ,获得积分10
32秒前
慕子完成签到 ,获得积分10
33秒前
33秒前
刘欣悦完成签到 ,获得积分10
36秒前
勤奋雨发布了新的文献求助10
38秒前
44秒前
48秒前
Aliya完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
55秒前
jin晨完成签到 ,获得积分10
56秒前
CodeCraft应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
老福贵儿应助科研通管家采纳,获得10
57秒前
思源应助科研通管家采纳,获得10
57秒前
57秒前
浮游应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
个性的荆应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
Akim应助科研通管家采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652866
求助须知:如何正确求助?哪些是违规求助? 4788617
关于积分的说明 15061919
捐赠科研通 4811370
什么是DOI,文献DOI怎么找? 2573877
邀请新用户注册赠送积分活动 1529653
关于科研通互助平台的介绍 1488381