Machine Learning Models for Inverse Design of the Electrochemical Oxidation Process for Water Purification

背景(考古学) 反向 过程(计算) 计算机科学 污染物 机器学习 数据挖掘 工艺工程 算法 化学 数学 工程类 古生物学 几何学 有机化学 生物 操作系统
作者
Ye Sun,Zhiyuan Zhao,Hailong Tong,Baiming Sun,Yanbiao Liu,Nanqi Ren,Shijie You
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 17990-18000 被引量:32
标识
DOI:10.1021/acs.est.2c08771
摘要

In this study, a machine learning (ML) framework is developed toward target-oriented inverse design of the electrochemical oxidation (EO) process for water purification. The XGBoost model exhibited the best performances for prediction of reaction rate (k) based on training the data set relevant to pollutant characteristics and reaction conditions, indicated by Rext2 of 0.84 and RMSEext of 0.79. Based on 315 data points collected from the literature, the current density, pollutant concentration, and gap energy (Egap) were identified to be the most impactful parameters available for the inverse design of the EO process. In particular, adding reaction conditions as model input features allowed provision of more available information and an increase in the sample size of the data set to improve the model accuracy. The feature importance analysis was performed for revealing the data pattern and feature interpretation by using Shapley additive explanations (SHAP). The ML-based inverse design for the EO process was generalized to a random case for tailoring the optimum conditions with phenol and 2,4-dichlorophenol (2,4-DCP) serving as model pollutants. The resulting predicted k values were close to the experimental k values by experimental verification, accounting for the relative error lower than 5%. This study provides a paradigm shift from conventional trial-and-error mode to data-driven mode for advancing research and development of the EO process by a time-saving, labor-effective, and environmentally friendly target-oriented strategy, which makes electrochemical water purification more efficient, more economic, and more sustainable in the context of global carbon peaking and carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的逊发布了新的文献求助30
1秒前
2秒前
3秒前
贺六浑发布了新的文献求助10
3秒前
SneaPea完成签到,获得积分10
4秒前
充电宝应助扶余山本采纳,获得10
6秒前
合适不悔发布了新的文献求助10
8秒前
一帆风顺发布了新的文献求助10
8秒前
别找了睡觉吧完成签到 ,获得积分10
8秒前
le完成签到,获得积分10
10秒前
11秒前
Hello应助简单的铃铛采纳,获得10
11秒前
word麻鸭完成签到 ,获得积分10
14秒前
KINDMAGIC发布了新的文献求助20
14秒前
zjy发布了新的文献求助10
15秒前
小马甲应助XU采纳,获得10
15秒前
小羊完成签到,获得积分10
20秒前
20秒前
赵梦娜完成签到,获得积分10
20秒前
木头杨完成签到,获得积分10
21秒前
22秒前
万能图书馆应助赵梦娜采纳,获得10
24秒前
宋小雅完成签到,获得积分10
25秒前
26秒前
顾安完成签到 ,获得积分10
27秒前
李健的小迷弟应助洛必达采纳,获得10
27秒前
要减肥仰发布了新的文献求助10
28秒前
yyz发布了新的文献求助10
32秒前
小马甲应助zjy采纳,获得10
32秒前
33秒前
田様应助Vegccc采纳,获得10
34秒前
36秒前
37秒前
岩墩墩完成签到 ,获得积分10
37秒前
泥娃娃完成签到,获得积分10
37秒前
木子木子粒完成签到 ,获得积分10
38秒前
39秒前
SneaPea发布了新的文献求助30
41秒前
调皮绮烟发布了新的文献求助10
41秒前
司徒文青发布了新的文献求助10
42秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413