Explainable Artificial Intelligence for Fault Diagnosis of Industrial Processes

可解释性 人工智能 计算机科学 深度学习 自编码 机器学习 人工神经网络 断层(地质) 过程(计算) 故障检测与隔离 可靠性(半导体) 无监督学习 数据挖掘 地质学 物理 功率(物理) 地震学 执行机构 操作系统 量子力学
作者
Kyojin Jang,Karl Ezra Pilario,Nayoung Lee,Il Moon,Jonggeol Na
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 4-11 被引量:34
标识
DOI:10.1109/tii.2023.3240601
摘要

Process monitoring is important for ensuring operational reliability and preventing occupational accidents. In recent years, data-driven methods such as machine learning and deep learning have been preferred for fault detection and diagnosis. In particular, unsupervised learning algorithms, such as auto-encoders, exhibit good detection performance, even for unlabeled data from complex processes. However, decisions generated from deep-neural-network-based models are difficult to interpret and cannot provide explanatory insight to users. We address this issue by proposing a new fault diagnosis method using explainable artificial intelligence to break the traditional trade-off between the accuracy and interpretability of deep learning model. First, an adversarial auto-encoder model for fault detection is built and then interpreted through the integration of Shapley additive explanations (SHAP) with a combined monitoring index. Using SHAP values, a diagnosis is conducted by allocating credit for detected faults, deviations from a normal state, among its input variables. The proposed diagnosis method can consider not only reconstruction space but also latent space unlike conventional method, which evaluate only reconstruction error. The proposed method was applied to two chemical process systems and compared with conventional diagnosis methods. The results highlight that the proposed method achieves the exact fault diagnosis for single and multiple faults and, also, distinguishes the global pattern of various fault types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助冬木采纳,获得30
刚刚
小二郎应助司徒不二采纳,获得10
刚刚
赵蔚蓝完成签到,获得积分10
刚刚
结实缘郡发布了新的文献求助10
1秒前
qiu完成签到,获得积分10
1秒前
研友_VZG7GZ应助凡君采纳,获得10
1秒前
Marilinta完成签到,获得积分10
1秒前
研友_VZG7GZ应助司空雨筠采纳,获得10
1秒前
白桃完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
传奇3应助浪费采纳,获得10
2秒前
2秒前
4秒前
科研通AI2S应助wonderingria采纳,获得10
4秒前
李健的小迷弟应助崔灿采纳,获得10
5秒前
5秒前
cccc发布了新的文献求助20
5秒前
5秒前
WangXinkui完成签到,获得积分10
5秒前
6秒前
6秒前
文静千愁完成签到,获得积分10
7秒前
8秒前
Rein完成签到,获得积分10
8秒前
8秒前
骑帅骑不快发布了新的文献求助100
9秒前
科研通AI6应助一二三四采纳,获得10
9秒前
9秒前
10秒前
111发布了新的文献求助10
10秒前
李健的粉丝团团长应助lmn采纳,获得10
10秒前
10秒前
ww发布了新的文献求助10
10秒前
10秒前
默默的青烟完成签到,获得积分10
11秒前
黎苏完成签到,获得积分10
11秒前
TY发布了新的文献求助10
11秒前
木辛发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416335
求助须知:如何正确求助?哪些是违规求助? 4532651
关于积分的说明 14135629
捐赠科研通 4448510
什么是DOI,文献DOI怎么找? 2440252
邀请新用户注册赠送积分活动 1432175
关于科研通互助平台的介绍 1409727