亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual‐way magnetic resonance image translation with transformer‐based adversarial network

计算机科学 人工智能 变压器 磁共振成像 翻译(生物学) 医学影像学 对抗制 计算机视觉 放射科 医学 物理 电压 生物化学 化学 信使核糖核酸 基因 量子力学
作者
Wenxin Li,Jun Xia,Weilin Gao,Zhihao Hu,Shengdong Nie,Yafen Li
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17837
摘要

The magnetic resonance (MR) image translation model is designed to generate MR images of required sequence from the images of existing sequence. However, the generalization performance of MR image generation models on external datasets tends to be unsatisfactory due to the inconsistency in the data distribution of MR images across different centers or scanners. The aim of this study is to propose a cross-sequence MR image synthesis model that could generate high-quality MR synthetic images with high transferability for small-sized external datasets. We proposed a dual-way magnetic resonance image translation model using transformer-based adversarial network (DMTrans) for MR image synthesis across sequences. It integrates a transformer-based generative architecture with an innovative discriminator design. The shifted window-based multi-head self-attention mechanism in DMTrans enables efficient capture of global and local features from MR images. The sequential dual-scale discriminator is designed to distinguish features of the generated images at multi-scale. We pre-trained DMTrans model for bi-directional image synthesis on a T1/T2-weighted MR image dataset comprising 4229 slices. It demonstrates superior performance to baseline methods on both qualitative and quantitative measurements. The SSIM, PSNR, and MAE metrics for synthetic T1 images generation based on T2 images are 0.91 ± 0.04, 25.30 ± 2.40, and 24.65 ± 10.46, while the metric values are 0.90 ± 0.04, 24.72 ± 1.62, and 23.28 ± 7.40 for the opposite direction. Fine-tuning is then utilized to adapt the model to another public dataset with T1/T2/proton-weighted (PD) images, so that only 6 patients of 500 slices are required for model adaptation to achieve high-quality T1/T2, T1/PD, and T2/PD image translation results. The proposed DMTrans achieves the state-of-the-art performance for cross-sequence MR image conversion, which could provide more information assisting clinical diagnosis and treatment. It also offered a versatile and efficient solution to the needs of high-quality MR image synthesis in data-scarce conditions at different centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
5秒前
Nick_YFWS完成签到,获得积分10
12秒前
葡萄藤上的云朵完成签到,获得积分10
21秒前
魁梧的衫完成签到 ,获得积分10
23秒前
34秒前
江水边完成签到 ,获得积分10
34秒前
圆圆发布了新的文献求助10
39秒前
orixero应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
CipherSage应助科研通管家采纳,获得10
41秒前
圆圆完成签到,获得积分10
47秒前
bkagyin应助qjd采纳,获得10
1分钟前
通辽小判官完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wangwangyj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
腼腆的馒头完成签到,获得积分10
1分钟前
2分钟前
Jerry完成签到 ,获得积分10
2分钟前
2分钟前
zr想发SCI发布了新的文献求助10
2分钟前
加油杨完成签到 ,获得积分10
2分钟前
qjd发布了新的文献求助10
2分钟前
完美世界应助哈哈哈采纳,获得10
2分钟前
2分钟前
百谷王完成签到,获得积分10
3分钟前
3分钟前
蜘蛛侠888发布了新的文献求助10
3分钟前
3分钟前
大个应助蜘蛛侠888采纳,获得10
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
sss完成签到 ,获得积分10
3分钟前
3分钟前
俄而完成签到 ,获得积分10
3分钟前
可乐发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4779643
求助须知:如何正确求助?哪些是违规求助? 4109877
关于积分的说明 12713828
捐赠科研通 3832468
什么是DOI,文献DOI怎么找? 2113853
邀请新用户注册赠送积分活动 1137218
关于科研通互助平台的介绍 1021742