计算机科学
特征(语言学)
人工智能
数据挖掘
语言学
哲学
作者
Lei Li,Haitao Li,Chun-Hou Zheng,Yansen Su
标识
DOI:10.1109/jbhi.2025.3563433
摘要
Synergistic drug combinations have shown promising results in treating cancer cell lines by enhancing therapeutic efficacy and minimizing adverse reactions. The effects of a drug vary across cell lines, and cell lines respond differently to various drugs during treatment. Recently, many AI-based techniques have been developed for predicting synergistic drug combinations. However, existing computational models have not addressed this phenomenon, neglecting the refinement of features for the same drug and cell line in different scenarios. In this work, we propose a feature refinement deep learning framework, termed FRSynergy, to identify synergistic drug combinations. It can guide the refinement of drug and cell line features in different scenarios by capturing relationships among diverse drug-drug-cell line triplet features and learning feature contextual information. The heterogeneous graph attention network is employed to acquire topological information-based original features for drugs and cell lines from sampled sub-graphs. Then, the feature refinement network is designed by combining attention mechanism and context information, which can learn context-aware feature representations for each drug and cell line feature in diverse drug-drug-cell line triplet contexts. Extensive experiments affirm the strong performance of FRSynergy in predicting synergistic drug combinations and, more importantly, demonstrate the effectiveness of feature refinement network in synergistic drug combination prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI