气候变化
风险分析(工程)
计算机科学
集合(抽象数据类型)
人类健康
领域(数学)
环路图
管理科学
环境资源管理
数据科学
系统动力学
业务
工程类
生态学
环境科学
医学
人工智能
环境卫生
生物
程序设计语言
纯数学
数学
作者
Byomkesh Talukder,Jochen E. Schubert,Mohammadali Tofighi,Patrick Likongwe,Eunice Y. Choi,Gibson Mphepo,Ali Asgary,Martin J. Bunch,Sosten Chiotha,Richard A. Matthew,Brett F. Sanders,Keith W. Hipel,Gary W. vanLoon,James Orbinski
标识
DOI:10.1016/j.joclim.2023.100292
摘要
Climate change is a global phenomenon with far-reaching consequences, and its impact on human health is a growing concern. The intricate interplay of various factors makes it challenging to accurately predict and understand the implications of climate change on human well-being. Conventional methodologies have limitations in comprehensively addressing the complexity and nonlinearity inherent in the relationships between climate change and health outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI