Adaptive online mean-variance portfolio selection with transaction costs

文件夹 交易成本 计量经济学 选择(遗传算法) 差异(会计) 经济 投资组合优化 金融经济学 计算机科学 业务 精算学 财务 人工智能 会计
作者
Sini Guo,Jia-Wen Gu,Wai‐Ki Ching,Benmeng Lyu
出处
期刊:Quantitative Finance [Informa]
卷期号:24 (1): 59-82
标识
DOI:10.1080/14697688.2023.2287134
摘要

Online portfolio selection is attracting increasing attention in both artificial intelligence and finance communities due to its efficiency and practicability in deriving optimal investment strategies in real investment activities where the market information is constantly renewed every second. The key issues in online portfolio selection include predicting the future returns of risky assets accurately given historical data and providing optimal investment strategies for investors in a short time. In the existing online portfolio selection studies, the historical return data of one risky asset is used to estimate its future return. In this paper, we incorporate the peer impact into the return prediction where the predicted return of one risky asset not only depends on its past return data but also the other risky assets in the financial market, which gives a more accurate prediction. An adaptive moving average method with peer impact (AOLPI) is proposed, in which the decaying factors can be adjusted automatically in the investment process. In addition, the adaptive mean-variance (AMV) model is firstly applied in online portfolio selection where the variance is employed to measure the investment risk and the covariance matrix can be linearly updated in the investment process. The adaptive online moving average mean-variance (AOLPIMV) algorithm is designed to provide flexible investment strategies for investors with different risk preferences. Finally, numerical experiments are presented to validate the effectiveness and advantages of AOLPIMV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star发布了新的文献求助10
刚刚
David完成签到 ,获得积分10
刚刚
勤恳擎宇发布了新的文献求助10
刚刚
小徐完成签到,获得积分10
1秒前
1秒前
1秒前
香草吧噗完成签到 ,获得积分10
1秒前
科研通AI6应助黑马王子采纳,获得30
1秒前
EE关闭了EE文献求助
2秒前
2秒前
3秒前
yy完成签到,获得积分10
3秒前
3秒前
研友_8RlG1n发布了新的文献求助10
4秒前
歪比八不发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
小泉完成签到,获得积分10
6秒前
7秒前
joshar发布了新的文献求助10
7秒前
7秒前
LL完成签到,获得积分10
8秒前
科研通AI6应助liu采纳,获得10
9秒前
魏林娟完成签到,获得积分20
9秒前
10秒前
wendy完成签到,获得积分10
11秒前
BJ123完成签到,获得积分10
11秒前
vv完成签到 ,获得积分10
11秒前
CodeCraft应助辛勤易真采纳,获得10
11秒前
吾系渣渣辉完成签到 ,获得积分10
12秒前
Liuruijia发布了新的文献求助10
13秒前
丘比特应助sunny采纳,获得10
13秒前
秦玉完成签到,获得积分20
14秒前
Hhhhhhhhhh发布了新的文献求助10
14秒前
思源应助陈文娜采纳,获得10
14秒前
14秒前
荔枝酱果冻完成签到,获得积分10
15秒前
噼里啪啦发布了新的文献求助10
15秒前
16秒前
Huzhu应助ysxl采纳,获得10
16秒前
流苏完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244