(Invited) Wafer Singulation - Laser Processing Combined: From Past to Future Hybrid Bonding

晶片键合 薄脆饼 材料科学 工程类 光电子学
作者
Rogier Evertsen
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (17): 1180-1180
标识
DOI:10.1149/ma2023-02171180mtgabs
摘要

Wafer singulation in the semiconductor industry has transformed from single step, straight forward diamond blade cutting of the product wafer into a process flow which may involve several different steps in different orders [1]. Nowadays, lasers play a central role in these schemes, involving ablation-based dicing or grooving, cold-ablation regimes and sub-surface material modification methods. Over the years, laser singulation and grooving has proven to provide solutions for different substrate materials and front- or backside layers [2]. Obviously, central topics for a production environment are the reliability and cost. Initial limitations on the application of the technique, such as a lowered material die strength, a large heat affect zone (HAZ) alongside the kerf, sidewall contamination and high burr along the surface edge of the cut have been partially or totally overcome. For example, for RFIC devices based on GaAs, multibeam laser singulation was the enabler for thinner substrates and higher production yields, and the elimination of process steps when using full metal wafer backside without etched streets cutting costs. In the production flow, it has been combined with wet etch processing steps to increase material die strength and remove burr. Similarly, such advantages can be exploited when combining multibeam laser processing of Si-based substrates with remote plasma etching schemes [3]. To tackle the challenges of today and tomorrow in terms of wafer stack build and advanced packaging technologies, we are looking at innovative approaches and similar combinations of process steps. The introduction of ultra-short pulsed (USP) laser systems for wafer grooving has shown an important qualitative step forward. Due to the different temporal regime compared to nanosecond pulsed lasers, a different material removal mechanism is active. This results in higher die strengths, lower burr and better edge quality, matching the singulation requirements of different semiconductor market segments. For die-to-wafer hybrid bonding processing, burr free die edges and high die strength are essential. Here, the qualitative edge of USP multibeam laser grooving in removal of metals, polymers and dielectrics from the dicing street make a combination with plasma dicing a strong proposition. In plasma dicing, different plasma etch steps can be applied for the full or partial singulation of the wafer [4]. Typically, the bulk silicon is removed with the so-called Bosch-process. As mask removal and opening of the dicing street are essential to this, it implies that pairing USP grooving and plasma dicing can provide the decisive advantage for future advanced packaging approaches. The latest results in a range of applications of laser-based singulation of wafers will be presented with or without the combination of other process steps. Keywords: Laser singulation, semiconductor, etching, plasma dicing, hybrid bonding. [1] W.-S. Lei, A. Kumar, and R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review, Journal of Vacuum Science and Technology B, vol. 30, no. 4, p. 040801, 2012. [2] M. R. Mark, A review of laser ablation and dicing of Si wafers, Precision Engineering, 73 377–408, 2022. [3] R. Evertsen, N. Beckers, S. Wang and R. Van der Stam, Remote Plasma Etching of Backend Semiconductor Materials for Reliable Packaging, Solid State Phenomena , 1662-9779, Vol. 314, 312-317. [4] R. Barnett; O. Ansell and D. Thomas, Considerations and benefits of plasma etch based wafer dicing, Electronics, Packaging Technology Conference (EPTC 2013), 2013 IEEE 15th 569–574.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
深情安青应助zzh采纳,获得10
1秒前
学术小白铼完成签到,获得积分10
1秒前
小朵发布了新的文献求助20
1秒前
2秒前
2秒前
zzr完成签到,获得积分20
3秒前
科研通AI5应助HugginBearOuO采纳,获得10
3秒前
Ava应助老泮采纳,获得30
4秒前
Jian李健发布了新的文献求助10
4秒前
HXT关注了科研通微信公众号
4秒前
Xiaoxiao应助兴奋之双采纳,获得10
5秒前
暖冬22发布了新的文献求助10
5秒前
身强力壮运气好完成签到,获得积分10
5秒前
Edenn完成签到,获得积分20
5秒前
车厘子发布了新的文献求助10
6秒前
斯文败类应助大块吃肉采纳,获得10
7秒前
cc发布了新的文献求助30
7秒前
NexusExplorer应助123采纳,获得10
7秒前
Owen应助韩韩采纳,获得10
9秒前
zlh完成签到 ,获得积分10
9秒前
10秒前
等待的香魔应助yb716采纳,获得10
10秒前
wqk完成签到,获得积分10
11秒前
hanhan完成签到,获得积分10
11秒前
CodeCraft应助李木子采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
小园爱吃肉完成签到,获得积分10
15秒前
15秒前
zzr发布了新的文献求助30
16秒前
ghost发布了新的文献求助10
16秒前
FashionBoy应助故意的驳采纳,获得10
16秒前
17秒前
浮游应助彭凯采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801