Spectral Graph Neural Network-Based Multi-Atlas Brain Network Fusion for Major Depressive Disorder Diagnosis

计算机科学 功能磁共振成像 脑图谱 人工智能 地图集(解剖学) 重性抑郁障碍 神经影像学 图形 机器学习 卷积神经网络 模式识别(心理学) 认知 神经科学 心理学 医学 理论计算机科学 解剖
作者
Deok-Joong Lee,Dong-Hee Shin,Young-Han Son,Ji-Wung Han,Ji-Hye Oh,Da-Hyun Kim,Ji-Hoon Jeong,Tae‐Eui Kam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2967-2978 被引量:23
标识
DOI:10.1109/jbhi.2024.3366662
摘要

Major Depressive Disorder (MDD) imposes a substantial burden within the healthcare domain, impacting millions of individuals worldwide. Functional Magnetic Resonance Imaging (fMRI) has emerged as a promising tool for the objective diagnosis of MDD, enabling the investigation of functional connectivity patterns in the brain associated with this disorder. However, most existing methods focus on a single brain atlas, which limits their ability to capture the complex, multi-scale nature of functional brain networks. To address these limitations, we propose a novel multi-atlas fusion method that incorporates early and late fusion in a unified framework. Our method introduces the concept of the holistic Functional Connectivity Network (FCN), which captures both intra-atlas relationships within individual atlases and inter-regional relationships between atlases with different brain parcellation scales. This comprehensive representation enables the identification of potential disease-related patterns associated with MDD in the early stage of our framework. Moreover, by decoding the holistic FCN from various perspectives through multiple spectral Graph Convolutional Neural Networks and fusing their results with decision-level ensembles, we further improve the performance of MDD diagnosis. Our approach is easily implemented with minimal modifications to existing model structures and demonstrates a robust performance across different baseline models. Our method, evaluated on public resting-state fMRI datasets, surpasses the current multi-atlas fusion methods, enhancing the accuracy of MDD diagnosis. The proposed novel multi-atlas fusion framework provides a more reliable MDD diagnostic technique. Experimental results show our approach outperforms both single- and multi-atlas-based methods, demonstrating its effectiveness in advancing MDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wickytt完成签到,获得积分10
1秒前
1秒前
鹤雪完成签到,获得积分10
1秒前
Doudou完成签到,获得积分10
1秒前
麻辣香郭发布了新的文献求助10
2秒前
bioinformation完成签到,获得积分10
2秒前
Mjl完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助艾扎克采纳,获得10
4秒前
4秒前
123发布了新的文献求助10
4秒前
共享精神应助李飘飘采纳,获得10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
谦让鹏涛发布了新的文献求助10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
鲍尔槐发布了新的文献求助10
10秒前
11秒前
www123qe发布了新的文献求助10
12秒前
Huazilin发布了新的文献求助10
12秒前
tzy发布了新的文献求助10
12秒前
14秒前
运气爆棚完成签到,获得积分10
14秒前
小孙完成签到,获得积分10
14秒前
chengmin发布了新的文献求助10
14秒前
zzy发布了新的文献求助10
14秒前
汉堡肉发布了新的文献求助10
15秒前
16秒前
科目三应助cherry采纳,获得10
16秒前
16秒前
南山无梅落完成签到 ,获得积分10
17秒前
完美世界应助含糊的紫文采纳,获得10
17秒前
缓缓完成签到 ,获得积分10
18秒前
20秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051