An Estimation of the Leaf Nitrogen Content of Apple Tree Canopies Based on Multispectral Unmanned Aerial Vehicle Imagery and Machine Learning Methods

多光谱图像 遥感 天蓬 环境科学 树(集合论) 氮气 人工智能 计算机科学 植物 数学 生物 地理 化学 数学分析 有机化学
作者
Xiaonan Zhao,Zhenyuan Zhao,Fengnian Zhao,Jiangfan Liu,Zhaoyang Li,Xingpeng Wang,Yang Gao
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 552-552
标识
DOI:10.3390/agronomy14030552
摘要

Accurate nitrogen fertilizer management determines the yield and quality of fruit trees, but there is a lack of multispectral UAV-based nitrogen fertilizer monitoring technology for orchards. Therefore, in this study, a field experiment was conducted by UAV to acquire multispectral images of an apple orchard with dwarf stocks and dense planting in southern Xinjiang and to estimate the nitrogen content of canopy leaves of apple trees by using three machine learning methods. The three inversion methods were partial least squares regression (PLSR), ridge regression (RR), and random forest regression (RFR). The results showed that the RF model could significantly improve the accuracy of estimating the leaf nitrogen content of the apple tree canopy, and the validation set of the four periods of apple trees ranged from 0.670 to 0.797 for R2, 0.838 mg L−1 to 4.403 mg L−1 for RMSE, and 1.74 to 2.222 for RPD, among which the RF model of the pre-fruit expansion stage of the 2023 season had the highest accuracy. This paper shows that the apple tree leaf nitrogen content estimation model based on multispectral UAV images constructed by using the RF machine learning method can timely and accurately diagnose the growth condition of apple trees, provide technical support for precise nitrogen fertilizer management in orchards, and provide a certain scientific basis for tree crop growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得30
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
lie应助科研通管家采纳,获得10
1秒前
清爽的秀完成签到,获得积分20
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
sumu应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
fy12345发布了新的文献求助20
4秒前
orixero应助哒哒哒宰采纳,获得10
4秒前
4秒前
4秒前
毛123完成签到,获得积分10
5秒前
6秒前
嘉子完成签到 ,获得积分10
9秒前
9秒前
10秒前
柔弱的面包应助哭泣剑封采纳,获得20
10秒前
Owen应助遥知马采纳,获得10
10秒前
10秒前
12秒前
科研通AI5应助不喝奶茶采纳,获得10
13秒前
SYLH应助哭泣剑封采纳,获得20
14秒前
14秒前
15秒前
文艺不弱发布了新的文献求助10
16秒前
赘婿应助一点采纳,获得10
16秒前
诺诺发布了新的文献求助30
17秒前
FashionBoy应助现实的白开水采纳,获得10
18秒前
18秒前
困困包应助香菜采纳,获得10
19秒前
19秒前
happiness应助哭泣剑封采纳,获得20
20秒前
21秒前
21秒前
落后的小蕊完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4141800
求助须知:如何正确求助?哪些是违规求助? 3678035
关于积分的说明 11626162
捐赠科研通 3371758
什么是DOI,文献DOI怎么找? 1852183
邀请新用户注册赠送积分活动 915028
科研通“疑难数据库(出版商)”最低求助积分说明 829612