Enhanced Pneumonia Detection in Chest X-Rays Using Hybrid Convolutional and Vision Transformer Networks

变压器 肺炎 计算机科学 医学 人工智能 工程类 电气工程 内科学 电压
作者
B. Mustapha,Yatong Zhou,Chunyan Shan,Zhitao Xiao
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115734056326685250101113959
摘要

The objective of this research is to enhance pneumonia detection in chest X-rays by leveraging a novel hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with modified Swin Transformer blocks. This study aims to significantly improve diagnostic accuracy, reduce misclassifications, and provide a robust, deployable solution for underdeveloped regions where access to conventional diagnostics and treatment is limited. The study developed a hybrid model architecture integrating CNNs with modified Swin Transformer blocks to work seamlessly within the same model. The CNN layers perform initial feature extraction, capturing local patterns within the images. At the same time, the modified Swin Transformer blocks handle long-range dependencies and global context through window-based self-attention mechanisms. Preprocessing steps included resizing images to 224x224 pixels and applying Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance image features. Data augmentation techniques, such as horizontal flipping, rotation, and zooming, were utilized to prevent overfitting and ensure model robustness. Hyperparameter optimization was conducted using Optuna, employing Bayesian optimization (Tree-structured Parzen Estimator) to fine-tune key parameters of both the CNN and Swin Transformer components, ensuring optimal model performance. The proposed hybrid model was trained and validated on a dataset provided by the Guangzhou Women and Children's Medical Center. The model achieved an overall accuracy of 98.72% and a loss of 0.064 on an unseen dataset, significantly outperforming a baseline CNN model. Detailed performance metrics indicated a precision of 0.9738 for the normal class and 1.0000 for the pneumonia class, with an overall F1-score of 0.9872. The hybrid model consistently outperformed the CNN model across all performance metrics, demonstrating higher accuracy, precision, recall, and F1-score. Confusion matrices revealed high sensitivity and specificity with minimal misclassifications. The proposed hybrid CNN-ViT model, which integrates modified Swin Transformer blocks within the CNN architecture, provides a significant advancement in pneumonia detection by effectively capturing both local and global features within chest X-ray images. The modifications to the Swin Transformer blocks enable them to work seamlessly with the CNN layers, enhancing the model's ability to understand complex visual patterns and dependencies. This results in superior classification performance. The lightweight design of the model eliminates the need for extensive hardware, facilitating easy deployment in resource-constrained settings. This innovative approach not only improves pneumonia diagnosis but also has the potential to enhance patient outcomes and support healthcare providers in underdeveloped regions. Future research will focus on further refining the model architecture, incorporating more advanced image processing techniques, and exploring explainable AI methods to provide deeper insights into the model's decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分10
刚刚
Jasper应助每天自然醒采纳,获得10
2秒前
司空豁发布了新的文献求助10
3秒前
CodeCraft应助明理丹烟采纳,获得10
4秒前
5秒前
西西发布了新的文献求助10
5秒前
vic303发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
jie完成签到,获得积分10
6秒前
8秒前
8秒前
娉娉0520发布了新的文献求助30
8秒前
舒心思雁发布了新的文献求助30
9秒前
风趣宛发布了新的文献求助10
10秒前
开开心心完成签到,获得积分10
10秒前
沉静的惜寒关注了科研通微信公众号
11秒前
叁加一完成签到,获得积分10
11秒前
李健应助MAD666采纳,获得10
11秒前
11秒前
SYLH应助whuhustwit采纳,获得10
12秒前
无花果应助明理丹烟采纳,获得10
12秒前
13秒前
情怀应助热心的白莲采纳,获得10
13秒前
zhaiyi发布了新的文献求助10
13秒前
FashionBoy应助加点孜然r采纳,获得10
14秒前
博修发布了新的文献求助10
14秒前
fan完成签到 ,获得积分10
16秒前
俭朴百招完成签到,获得积分10
17秒前
一桥轻雨完成签到,获得积分10
17秒前
漫山完成签到,获得积分10
17秒前
17秒前
司空豁发布了新的文献求助10
18秒前
19秒前
20秒前
斯文败类应助明理丹烟采纳,获得10
20秒前
夜猫酱酱子完成签到,获得积分10
22秒前
香蕉觅云应助aw采纳,获得10
23秒前
上官若男应助PanZi采纳,获得10
23秒前
高分求助中
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934080
求助须知:如何正确求助?哪些是违规求助? 3479372
关于积分的说明 11004522
捐赠科研通 3209252
什么是DOI,文献DOI怎么找? 1773535
邀请新用户注册赠送积分活动 860484
科研通“疑难数据库(出版商)”最低求助积分说明 797680