Self-Attentive Local Aggregation Learning With Prototype Guided Regularization for Point Cloud Semantic Segmentation of High-Speed Railways

点云 计算机科学 分割 深度学习 人工智能 可扩展性 模块化设计 正规化(语言学) 机器学习 数据库 操作系统
作者
Zhipeng Wang,Yixuan Geng,Limin Jia,Yong Qin,Yuanyuan Chai,Lei Tong,Keyan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11157-11170 被引量:5
标识
DOI:10.1109/tits.2023.3281352
摘要

Point cloud semantic segmentation for railway infrastructures is an essential step towards establishing railway digital twins. Deep learning-based methods have shown great potential in this field compared to traditional methods that rely on hand-crafted features. However, deep learning-based methods for railway point clouds still face typical challenges that need to be addressed. In this regard, we propose a novel learning framework named SALAProNet, which consists of a set of effective and concise modular solutions. The first challenge addressed is the massive data scale of railway point clouds, which makes it difficult to directly process large-scale point clouds due to memory limitations. To solve this problem, we adapt efficient random sampling in the network and propose the Self-Attentive Aggregation (SAA) module based on an attention mechanism to greatly expand the receptive field, which covers the unsampled points and successfully retains information in a high-dimensional feature space. The second challenge is fine-grained segmentation, where we propose the Local Geometry Embedding (LGE) module to embed local geometry. With the help of context information provided by SAA, the network can perform fine-grained segmentation for railway infrastructures. The third challenge is the insufficient generalization ability of the network, where we propose a Prototype Guided Regularization (PGR) method to guide the network to segment the point cloud among railways with different construction standards. This method enhances the network’s interpretability and improves its generalization ability. We have validated our proposed framework through experiments on different datasets, and it outperforms state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟若剑完成签到,获得积分10
刚刚
酷酷的碳完成签到 ,获得积分10
1秒前
iNk应助tesla采纳,获得10
2秒前
充电宝应助Dotson采纳,获得10
3秒前
不安的晓灵完成签到 ,获得积分10
4秒前
芋圆完成签到,获得积分10
5秒前
默默白开水完成签到 ,获得积分10
6秒前
英姑应助机灵的小蘑菇采纳,获得10
6秒前
轻歌水越完成签到 ,获得积分10
6秒前
老猪佩奇完成签到,获得积分10
7秒前
京城第一社恐完成签到,获得积分10
7秒前
lilei完成签到,获得积分10
8秒前
sherry221完成签到,获得积分10
9秒前
火星上以柳完成签到,获得积分10
11秒前
零玖完成签到 ,获得积分10
11秒前
12秒前
研友_GZ3zRn完成签到 ,获得积分0
12秒前
江湖笑发布了新的文献求助10
12秒前
Free完成签到,获得积分10
13秒前
queen814完成签到,获得积分10
14秒前
A12138完成签到 ,获得积分10
14秒前
聪明的泡面完成签到 ,获得积分10
15秒前
濮阳盼曼完成签到,获得积分10
16秒前
杠赛来完成签到,获得积分10
17秒前
19秒前
我不困完成签到,获得积分10
19秒前
wlnhyF完成签到,获得积分10
19秒前
20秒前
20秒前
敖启航完成签到,获得积分20
21秒前
nv完成签到,获得积分10
21秒前
哈利波特完成签到,获得积分10
21秒前
卧镁铀钳完成签到 ,获得积分10
22秒前
小二郎应助科研通管家采纳,获得10
25秒前
cdercder应助科研通管家采纳,获得10
25秒前
25秒前
rainny完成签到,获得积分10
25秒前
miemie66完成签到,获得积分10
27秒前
为你钟情完成签到 ,获得积分10
27秒前
kakakakak完成签到,获得积分10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840885
求助须知:如何正确求助?哪些是违规求助? 3382790
关于积分的说明 10526580
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708933
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632