Evaluation of future wetland changes under optimal scenarios and land degradation neutrality analysis in the Guangdong-Hong Kong-Macao Greater Bay Area

湿地 环境科学 海湾 城市化 可持续发展 土地利用 草原 情景分析 生态系统 红树林 环境保护 水资源管理 环境资源管理 水文学(农业) 地理 生态学 生物 统计 工程类 考古 岩土工程 数学
作者
Kaifeng Peng,Weiguo Jiang,Xuejun Wang,Peng Hou,Zhifeng Wu,Tiejun Cui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:879: 163111-163111 被引量:28
标识
DOI:10.1016/j.scitotenv.2023.163111
摘要

Wetlands are one of the most productive ecosystems on Earth and are also focused on by the Sustainable Development Goals (SDGs). However, global wetlands have suffered from considerable degradation due to rapid urbanization and climate change. To support wetland protection and SDG reporting, we predicted future wetland changes and assessed land degradation neutrality (LDN) from 2020 to 2035 under four scenarios in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). A simulation model combining random forest (RF), CLUE-S and multi-objective programming (MOP) methods was developed to predict wetland patterns under the natural increase scenario (NIS), economic development scenario (EDS), ecological protection and restoration scenario (ERPS) and harmonious development scenario (HDS). The simulation results indicated that the integration of RF and CLUE-S achieved good simulation accuracy, with OA over 0.86 and kappa indices over 0.79. From 2020 to 2035, the mangrove, tidal flat and agricultural pond increased while the coastal shallow water decreased under all scenarios. The river decreased under NIS and EDS, while increased under ERPS and HDS. The Reservoir decreased under NIS, while increased under the remaining scenarios. Among scenarios, the EDS had the largest built-up land and agricultural pond, and the ERPS had the largest forest and grassland. The HDS was a coordinated scenario that balanced economic development and ecological protection. Its natural wetlands were almost equal to these of ERPS, and its built-up land and cropland were almost equal to these of EDS. Then, the land degradation and SDG 15.3.1 indicators were calculated to support the LDN target. From 2020 to 2035, the ERPS had a smallest gap of 705.51 km2 from the LDN target, following the HDS, EDS and NIS. The SDG 15.3.1 indicator was lowest under the ERPS, with a value of 0.85 %. Our study could offer strong support for urban sustainable development and SDGs reporting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mly发布了新的文献求助10
1秒前
悠悠发布了新的文献求助200
1秒前
高贵书兰完成签到 ,获得积分10
2秒前
qiuhuajin完成签到,获得积分10
2秒前
2秒前
fuguier发布了新的文献求助10
2秒前
娃哈哈完成签到,获得积分10
3秒前
3秒前
浮浮世世发布了新的文献求助10
3秒前
明亮冰枫应助牧童采纳,获得50
4秒前
zheweitang完成签到,获得积分10
4秒前
quzhenzxxx完成签到,获得积分10
4秒前
4秒前
wind11完成签到,获得积分20
5秒前
qiuhuajin发布了新的文献求助10
5秒前
5秒前
stone发布了新的文献求助10
6秒前
春和完成签到 ,获得积分10
6秒前
九星完成签到 ,获得积分10
6秒前
122发布了新的文献求助10
6秒前
彭于晏应助2810527600采纳,获得10
7秒前
7秒前
Iridescent发布了新的文献求助10
7秒前
所所应助Vince采纳,获得10
8秒前
9秒前
佳佳完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
alstom发布了新的文献求助10
11秒前
chlachj完成签到,获得积分20
11秒前
11秒前
铎子完成签到,获得积分10
12秒前
果粒橙完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
hahajiang完成签到,获得积分10
13秒前
铎子发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5811686
求助须知:如何正确求助?哪些是违规求助? 5899877
关于积分的说明 15532512
捐赠科研通 4935697
什么是DOI,文献DOI怎么找? 2657975
邀请新用户注册赠送积分活动 1604209
关于科研通互助平台的介绍 1559335