Evaluation of future wetland changes under optimal scenarios and land degradation neutrality analysis in the Guangdong-Hong Kong-Macao Greater Bay Area

湿地 环境科学 海湾 城市化 可持续发展 土地利用 草原 情景分析 生态系统 红树林 环境保护 水资源管理 环境资源管理 水文学(农业) 地理 生态学 生物 统计 工程类 考古 岩土工程 数学
作者
Kaifeng Peng,Weiguo Jiang,Xuejun Wang,Peng Hou,Zhifeng Wu,Tiejun Cui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:879: 163111-163111 被引量:28
标识
DOI:10.1016/j.scitotenv.2023.163111
摘要

Wetlands are one of the most productive ecosystems on Earth and are also focused on by the Sustainable Development Goals (SDGs). However, global wetlands have suffered from considerable degradation due to rapid urbanization and climate change. To support wetland protection and SDG reporting, we predicted future wetland changes and assessed land degradation neutrality (LDN) from 2020 to 2035 under four scenarios in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). A simulation model combining random forest (RF), CLUE-S and multi-objective programming (MOP) methods was developed to predict wetland patterns under the natural increase scenario (NIS), economic development scenario (EDS), ecological protection and restoration scenario (ERPS) and harmonious development scenario (HDS). The simulation results indicated that the integration of RF and CLUE-S achieved good simulation accuracy, with OA over 0.86 and kappa indices over 0.79. From 2020 to 2035, the mangrove, tidal flat and agricultural pond increased while the coastal shallow water decreased under all scenarios. The river decreased under NIS and EDS, while increased under ERPS and HDS. The Reservoir decreased under NIS, while increased under the remaining scenarios. Among scenarios, the EDS had the largest built-up land and agricultural pond, and the ERPS had the largest forest and grassland. The HDS was a coordinated scenario that balanced economic development and ecological protection. Its natural wetlands were almost equal to these of ERPS, and its built-up land and cropland were almost equal to these of EDS. Then, the land degradation and SDG 15.3.1 indicators were calculated to support the LDN target. From 2020 to 2035, the ERPS had a smallest gap of 705.51 km2 from the LDN target, following the HDS, EDS and NIS. The SDG 15.3.1 indicator was lowest under the ERPS, with a value of 0.85 %. Our study could offer strong support for urban sustainable development and SDGs reporting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
万能图书馆应助zhao采纳,获得10
刚刚
搜集达人应助小陈1122采纳,获得10
1秒前
Feiyan完成签到,获得积分10
2秒前
小卷发布了新的文献求助10
3秒前
3秒前
MJJ完成签到,获得积分20
4秒前
整齐唯雪完成签到,获得积分10
4秒前
Smile完成签到,获得积分10
5秒前
5秒前
跟我回江南完成签到,获得积分10
7秒前
7秒前
欢呼的幻悲完成签到,获得积分10
7秒前
小阿博完成签到,获得积分10
7秒前
7秒前
小马甲应助tyy采纳,获得10
8秒前
hhh完成签到 ,获得积分10
8秒前
9秒前
上善若水发布了新的文献求助10
9秒前
小于发布了新的文献求助10
11秒前
白日梦完成签到,获得积分10
11秒前
11秒前
orixero应助无名之辈采纳,获得10
12秒前
淡然寄瑶完成签到 ,获得积分10
13秒前
Jonathan完成签到,获得积分10
13秒前
yolo完成签到 ,获得积分10
14秒前
单纯黑米发布了新的文献求助10
14秒前
科研通AI6应助Ge0085采纳,获得10
14秒前
14秒前
15秒前
科研通AI6应助小卷采纳,获得10
16秒前
cherish发布了新的文献求助10
16秒前
海聪天宇发布了新的文献求助10
17秒前
fei应助温暖的夏波采纳,获得30
18秒前
wang完成签到,获得积分10
18秒前
有魅力的牛青完成签到,获得积分10
18秒前
平常的无心完成签到,获得积分10
18秒前
花花完成签到 ,获得积分10
20秒前
能干冰露完成签到,获得积分10
20秒前
JOBZ完成签到,获得积分10
20秒前
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499682
求助须知:如何正确求助?哪些是违规求助? 4596445
关于积分的说明 14454640
捐赠科研通 4529637
什么是DOI,文献DOI怎么找? 2482120
邀请新用户注册赠送积分活动 1466084
关于科研通互助平台的介绍 1438891