Integrating Materials Representations Into Feature Engineering in Machine Learning for Crystalline Materials: From Local to Global Chemistry‐Structure Information Coupling

可解释性 计算机科学 特征(语言学) 图形核 人工智能 机器学习 特征学习 代表(政治) 人工神经网络 数据挖掘 理论计算机科学 核方法 支持向量机 哲学 语言学 变核密度估计 政治 政治学 法学
作者
Bin Xiao,Yuchao Tang,Yi Liu
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (4)
标识
DOI:10.1002/wcms.70044
摘要

ABSTRACT Integrating materials representations into feature engineering by rational design plays a critical role in determining the capability and accuracy of material property prediction via machine learning (ML). There still exists a lack of comprehensive classification and multi‐dimensional evaluation for many existing feature models that could guide model selection in applications and further development. This review systematically classifies feature construction methods for crystalline structures, emphasizing the coupling between chemical and structural information. We systematically discuss the geometric configurations, chemical attributes, and their intricate coupling mechanisms that can be leveraged for feature engineering. Furthermore, a comprehensive comparison is performed across multiple aspects including graph network representation, structural information embedding, chemistry‐structure information coupling, local versus global characteristics, long‐range versus short‐range description, algorithm compatibility with kernel function method or deep neural network, data size requirements, computational complexity, and interpretability mechanisms, thereby highlighting key variations in existing feature models and improving the physical interpretability of predictive models. To illustrate the integration of multi‐dimensional characteristics, the center‐environment (CE) feature model is introduced based on the coupling between local chemical and structural information of physical core‐shell structures. Within the CE model, the pre‐attention mechanism reorients focus from intricate details within complex ML algorithms to explicit feature models that depict physical core‐shell configurations. By minimizing data requirements while enhancing transparency in ML models, the CE feature provides a practical approach for developing efficient and accurate ML‐based predictions tailored for small‐data scenarios in materials science. This article is categorized under: Structure and Mechanism > Computational Materials Science Data Science > Artificial Intelligence/Machine Learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
望今如昔发布了新的文献求助10
刚刚
1秒前
小马甲应助烤红薯骑士采纳,获得10
1秒前
1秒前
所所应助ning采纳,获得10
2秒前
大胆诗云发布了新的文献求助10
2秒前
动听的砖家关注了科研通微信公众号
2秒前
小马甲应助HHHHH采纳,获得10
2秒前
2秒前
hhh发布了新的文献求助30
3秒前
3秒前
影子发布了新的文献求助10
4秒前
松绿格发布了新的文献求助10
4秒前
YCJ发布了新的文献求助20
4秒前
乐乐应助江南刀王采纳,获得10
5秒前
ff关注了科研通微信公众号
5秒前
5秒前
飘逸丹彤发布了新的文献求助10
5秒前
SciGPT应助hong采纳,获得10
6秒前
迟迟应助zyaire829采纳,获得10
7秒前
ujnujn发布了新的文献求助20
7秒前
领导范儿应助yxt采纳,获得10
7秒前
Arina发布了新的文献求助10
7秒前
从容的完成签到 ,获得积分10
7秒前
新嗨发布了新的文献求助10
7秒前
wanci应助北彧采纳,获得10
7秒前
星辰大海应助ych采纳,获得10
8秒前
从容盼山发布了新的文献求助10
9秒前
9秒前
9秒前
噜噜噜发布了新的文献求助10
10秒前
xissy完成签到,获得积分10
11秒前
JinTongtong完成签到 ,获得积分10
11秒前
fffbbb完成签到,获得积分10
12秒前
12秒前
13秒前
松绿格完成签到,获得积分10
13秒前
Owen应助子心采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
菊と刀 日本文化の型 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369338
求助须知:如何正确求助?哪些是违规求助? 3867662
关于积分的说明 12058970
捐赠科研通 3510299
什么是DOI,文献DOI怎么找? 1926373
邀请新用户注册赠送积分活动 968321
科研通“疑难数据库(出版商)”最低求助积分说明 867415