Predicting rapid progression in knee osteoarthritis: a novel and interpretable automated machine learning approach, with specific focus on young patients and early disease

医学 骨关节炎 疾病 人工智能 机器学习 光学(聚焦) 物理医学与康复 物理疗法 内科学 病理 替代医学 计算机科学 物理 光学
作者
Simone Castagno,Mark Birch,Mihaela van der Schaar,Andrew W. McCaskie
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:84 (1): 124-135 被引量:10
标识
DOI:10.1136/ard-2024-225872
摘要

To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a 2-year period. We developed autoML models integrating clinical, biochemical, X-ray and MRI data. Using two data sets within the OA Initiative-the Foundation for the National Institutes of Health OA Biomarker Consortium for training and hold-out validation, and the Pivotal Osteoarthritis Initiative MRI Analyses study for external validation-we employed two distinct definitions of clinical outcomes: Multiclass (categorising OA progression into pain and/or radiographic) and binary. Key predictors of progression were identified through advanced interpretability techniques, and subgroup analyses were conducted by age, sex and ethnicity with a focus on early-stage disease. Although the most reliable models incorporated all available features, simpler models including only clinical variables achieved robust external validation performance, with area under the precision-recall curve (AUC-PRC) 0.727 (95% CI: 0.726 to 0.728) for multiclass predictions; and AUC-PRC 0.764 (95% CI: 0.762 to 0.766) for binary predictions. Multiclass models performed best in patients with early-stage OA (AUC-PRC 0.724-0.806) whereas binary models were more reliable in patients younger than 60 (AUC-PRC 0.617-0.693). Patient-reported outcomes and MRI features emerged as key predictors of progression, though subgroup differences were noted. Finally, we developed web-based applications to visualise our personalised predictions. Our novel tool's transparency and reliability in predicting rapid knee OA progression distinguish it from conventional 'black-box' methods and are more likely to facilitate its acceptance by clinicians and patients, enabling effective implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的孤丝完成签到 ,获得积分10
刚刚
风中黎昕完成签到 ,获得积分10
1秒前
zhao发布了新的文献求助20
2秒前
奇客完成签到,获得积分10
3秒前
琪求好运完成签到,获得积分10
4秒前
CipherSage应助12采纳,获得10
4秒前
英俊的铭应助baolongzhan采纳,获得10
6秒前
8秒前
bill完成签到,获得积分10
10秒前
purkid发布了新的文献求助10
10秒前
丹丹发布了新的文献求助10
10秒前
liujiaqi发布了新的文献求助10
11秒前
11秒前
思源应助Ethanyoyo0917采纳,获得10
12秒前
田様应助89采纳,获得10
13秒前
小鱼丸完成签到,获得积分10
14秒前
14秒前
陈某完成签到,获得积分10
14秒前
14秒前
grzzz发布了新的文献求助10
14秒前
科研南完成签到,获得积分10
14秒前
lucky发布了新的文献求助10
16秒前
wang发布了新的文献求助10
17秒前
HP完成签到 ,获得积分10
19秒前
baolongzhan发布了新的文献求助10
19秒前
LSX发布了新的文献求助10
19秒前
changping应助purkid采纳,获得10
20秒前
Orange应助小小雪采纳,获得10
20秒前
丑鸭子完成签到,获得积分20
22秒前
22秒前
Eva完成签到,获得积分10
22秒前
23秒前
23秒前
盏盏应助liujiaqi采纳,获得10
23秒前
马达完成签到,获得积分10
23秒前
张步完成签到 ,获得积分10
23秒前
zz完成签到 ,获得积分10
24秒前
手抓饼啊完成签到,获得积分10
26秒前
徐桐完成签到,获得积分10
26秒前
李健应助cloud采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904