Predicting rapid progression in knee osteoarthritis: a novel and interpretable automated machine learning approach, with specific focus on young patients and early disease

医学 骨关节炎 疾病 人工智能 机器学习 光学(聚焦) 物理医学与康复 物理疗法 内科学 病理 替代医学 计算机科学 物理 光学
作者
Simone Castagno,Mark Birch,Mihaela van der Schaar,Andrew W. McCaskie
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:84 (1): 124-135 被引量:5
标识
DOI:10.1136/ard-2024-225872
摘要

To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a 2-year period. We developed autoML models integrating clinical, biochemical, X-ray and MRI data. Using two data sets within the OA Initiative-the Foundation for the National Institutes of Health OA Biomarker Consortium for training and hold-out validation, and the Pivotal Osteoarthritis Initiative MRI Analyses study for external validation-we employed two distinct definitions of clinical outcomes: Multiclass (categorising OA progression into pain and/or radiographic) and binary. Key predictors of progression were identified through advanced interpretability techniques, and subgroup analyses were conducted by age, sex and ethnicity with a focus on early-stage disease. Although the most reliable models incorporated all available features, simpler models including only clinical variables achieved robust external validation performance, with area under the precision-recall curve (AUC-PRC) 0.727 (95% CI: 0.726 to 0.728) for multiclass predictions; and AUC-PRC 0.764 (95% CI: 0.762 to 0.766) for binary predictions. Multiclass models performed best in patients with early-stage OA (AUC-PRC 0.724-0.806) whereas binary models were more reliable in patients younger than 60 (AUC-PRC 0.617-0.693). Patient-reported outcomes and MRI features emerged as key predictors of progression, though subgroup differences were noted. Finally, we developed web-based applications to visualise our personalised predictions. Our novel tool's transparency and reliability in predicting rapid knee OA progression distinguish it from conventional 'black-box' methods and are more likely to facilitate its acceptance by clinicians and patients, enabling effective implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经谷云发布了新的文献求助10
刚刚
沉静的绮波完成签到 ,获得积分10
1秒前
LHP完成签到,获得积分10
1秒前
Neko完成签到,获得积分10
2秒前
科研通AI5应助Freya采纳,获得10
4秒前
4秒前
研友_LB1rk8完成签到,获得积分10
5秒前
布蓝图完成签到 ,获得积分10
7秒前
OKC完成签到,获得积分10
9秒前
wangayting发布了新的文献求助30
9秒前
NexusExplorer应助JiegeSCI采纳,获得10
12秒前
12秒前
1117完成签到 ,获得积分10
13秒前
14秒前
w32完成签到,获得积分10
18秒前
19秒前
啊怪完成签到 ,获得积分10
20秒前
23秒前
明眸完成签到 ,获得积分10
23秒前
6633发布了新的文献求助10
24秒前
ATYS完成签到,获得积分10
26秒前
27秒前
jenningseastera应助阿枫采纳,获得30
29秒前
张牧之完成签到 ,获得积分10
30秒前
panpan完成签到 ,获得积分10
33秒前
苦行僧发布了新的文献求助50
34秒前
布可完成签到,获得积分10
35秒前
ES完成签到 ,获得积分0
38秒前
Bryce完成签到 ,获得积分10
39秒前
39秒前
40秒前
幽默的友灵完成签到,获得积分10
40秒前
41秒前
41秒前
bk201完成签到 ,获得积分10
41秒前
songf11完成签到,获得积分10
42秒前
44秒前
Freya发布了新的文献求助10
45秒前
曹国庆完成签到 ,获得积分10
45秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751