Predicting rapid progression in knee osteoarthritis: a novel and interpretable automated machine learning approach, with specific focus on young patients and early disease

医学 骨关节炎 疾病 人工智能 机器学习 光学(聚焦) 物理医学与康复 物理疗法 内科学 病理 替代医学 计算机科学 物理 光学
作者
Simone Castagno,Mark Birch,Mihaela van der Schaar,Andrew W. McCaskie
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:84 (1): 124-135 被引量:7
标识
DOI:10.1136/ard-2024-225872
摘要

To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a 2-year period. We developed autoML models integrating clinical, biochemical, X-ray and MRI data. Using two data sets within the OA Initiative-the Foundation for the National Institutes of Health OA Biomarker Consortium for training and hold-out validation, and the Pivotal Osteoarthritis Initiative MRI Analyses study for external validation-we employed two distinct definitions of clinical outcomes: Multiclass (categorising OA progression into pain and/or radiographic) and binary. Key predictors of progression were identified through advanced interpretability techniques, and subgroup analyses were conducted by age, sex and ethnicity with a focus on early-stage disease. Although the most reliable models incorporated all available features, simpler models including only clinical variables achieved robust external validation performance, with area under the precision-recall curve (AUC-PRC) 0.727 (95% CI: 0.726 to 0.728) for multiclass predictions; and AUC-PRC 0.764 (95% CI: 0.762 to 0.766) for binary predictions. Multiclass models performed best in patients with early-stage OA (AUC-PRC 0.724-0.806) whereas binary models were more reliable in patients younger than 60 (AUC-PRC 0.617-0.693). Patient-reported outcomes and MRI features emerged as key predictors of progression, though subgroup differences were noted. Finally, we developed web-based applications to visualise our personalised predictions. Our novel tool's transparency and reliability in predicting rapid knee OA progression distinguish it from conventional 'black-box' methods and are more likely to facilitate its acceptance by clinicians and patients, enabling effective implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tachikoma完成签到 ,获得积分10
1秒前
1秒前
lfydhk发布了新的文献求助10
1秒前
炙热的雨旋完成签到,获得积分10
1秒前
1秒前
tc应助顺心的乌冬面采纳,获得10
1秒前
丘比特应助昔我依依采纳,获得10
1秒前
225455完成签到,获得积分10
2秒前
2秒前
xzx7086发布了新的文献求助10
3秒前
chi123完成签到,获得积分10
3秒前
Owen应助朝暮采纳,获得10
3秒前
blue完成签到,获得积分10
4秒前
小栗子完成签到,获得积分10
4秒前
粗心的凡阳完成签到,获得积分10
4秒前
4秒前
任性的幼枫完成签到,获得积分10
5秒前
毁灭吧完成签到,获得积分10
5秒前
相一完成签到,获得积分10
5秒前
汉堡包应助LLLL采纳,获得10
6秒前
轩仔发布了新的文献求助10
6秒前
DaLu完成签到,获得积分10
6秒前
顾矜应助demo1采纳,获得10
6秒前
7秒前
zoey发布了新的文献求助10
7秒前
条博士完成签到,获得积分10
7秒前
内向沛珊发布了新的文献求助10
7秒前
WWW完成签到,获得积分10
8秒前
今后应助宋宋采纳,获得10
8秒前
8秒前
8秒前
隐形曼青应助冰巧采纳,获得10
8秒前
昏睡的蟠桃应助生动梦松采纳,获得200
9秒前
vvA11完成签到,获得积分10
9秒前
禾苗完成签到,获得积分10
9秒前
lfydhk完成签到,获得积分10
9秒前
10秒前
10秒前
所所应助lanchong采纳,获得10
10秒前
毕bb发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4477100
求助须知:如何正确求助?哪些是违规求助? 3934904
关于积分的说明 12208017
捐赠科研通 3589540
什么是DOI,文献DOI怎么找? 1973780
邀请新用户注册赠送积分活动 1011093
科研通“疑难数据库(出版商)”最低求助积分说明 904858