Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery

药物发现 计算机科学 深度学习 离子通道 纳米技术 计算生物学 神经科学 人工智能 生物信息学 生物 材料科学 受体 生物化学
作者
Diego López Mateos,B. Harris,Adriana Hernández González,Kush Narang,Vladimir Yarov‐Yarovoy
出处
期刊:Physiology [American Physiological Society]
标识
DOI:10.1152/physiol.00029.2024
摘要

Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
此晴可待发布了新的文献求助10
刚刚
1秒前
彭于晏应助谨慎罡采纳,获得10
1秒前
yjf发布了新的文献求助10
1秒前
1秒前
1秒前
CodeCraft应助鳗鱼灵阳采纳,获得10
1秒前
zh123完成签到,获得积分10
1秒前
自由冰凡完成签到 ,获得积分10
1秒前
1秒前
2秒前
BingyuLi完成签到,获得积分10
2秒前
3秒前
在水一方应助水兽采纳,获得10
3秒前
大个应助沉睡的大马猴采纳,获得10
4秒前
me完成签到,获得积分10
4秒前
5秒前
沐林杨完成签到,获得积分10
5秒前
5秒前
zcydbttj2011发布了新的文献求助10
5秒前
wq发布了新的文献求助10
5秒前
6秒前
王十二完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
makabakala发布了新的文献求助10
8秒前
优秀谷波发布了新的文献求助10
8秒前
wcwzcz完成签到,获得积分10
8秒前
junfeiwang发布了新的文献求助10
8秒前
洁净的向南完成签到 ,获得积分10
8秒前
8秒前
八格牙路发布了新的文献求助10
9秒前
惊鸿客发布了新的文献求助20
9秒前
小蘑菇应助华东偏振王采纳,获得10
9秒前
9秒前
瘦瘦的不尤关注了科研通微信公众号
10秒前
黄金彪发布了新的文献求助30
11秒前
nainai发布了新的文献求助30
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797