Research on Intelligent Ventilation System of Metal Mine Based on Real-Time Sensing Airflow Parameters with a Global Scheme

气流 通风(建筑) 方案(数学) 实时计算 计算机科学 环境科学 工程类 机械工程 数学 数学分析
作者
Yin Chen,Zijun Li,Xin Liu,Wenxuan Tang,Qilong Zhang,Haining Wang,Wei Huang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 7602-7602 被引量:3
标识
DOI:10.3390/app14177602
摘要

In ventilation systems of metal mines, the real-time measurement of the airflow field and a reduction in pollutants are necessary for clean environmental management and human health. However, the limited quantitative data and expensive detection technology hinder the accurate assessment of mine ventilation effectiveness and safety status. Therefore, we propose a new method for constructing a mine intelligent ventilation system with a global scheme, which can realize the intelligent prediction of unknown points in the mine ventilation system by measuring the airflow parameters of multiple known points. Firstly, the nodal wind pressure method combined with the Hardy–Cross iterative algorithm is used to solve the mine ventilation network, and the airflow parameters under normal operation and extreme working conditions are simulated, based on which an intelligent ventilation training database is established. Secondly, we compared the airflow parameter prediction ability of three different machine learning models with different neural network models based on the collected small-sample airflow field dataset of a mine roadway. Finally, the depth learning method is optimized to build the intelligent algorithm model of the mine ventilation system, and a large number of three-dimensional simulation data and field measurement data of the mine ventilation system are used to train the model repeatedly to realize the intelligent perception of air flow parameters of a metal mine ventilation network and the construction of an intelligent ventilation system. The results show that the maximum error of a single airflow measurement point is 1.24%, the maximum overall error is 3.25%, and the overall average error is 0.51%. The intelligent algorithm has a good model training effect and high precision and can meet the requirements of the research and application of this project. Through case analysis, this method can predict the airflow parameters of any position underground and realize the real-time control of mine safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小涛涛发布了新的文献求助10
刚刚
sooyaaa发布了新的文献求助10
刚刚
心澄宇静发布了新的文献求助10
4秒前
gxc发布了新的文献求助20
5秒前
Yan完成签到,获得积分10
5秒前
ran发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
better完成签到 ,获得积分10
9秒前
jzhou88完成签到,获得积分10
10秒前
忧郁发卡发布了新的文献求助30
12秒前
12秒前
豆豆发布了新的文献求助10
13秒前
绮111发布了新的文献求助10
15秒前
Lucas应助二饼采纳,获得10
15秒前
15秒前
16秒前
莫西莫西完成签到 ,获得积分10
19秒前
zzz发布了新的文献求助10
19秒前
默默毛豆完成签到,获得积分10
20秒前
大龙哥886应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
21秒前
21秒前
大龙哥886应助科研通管家采纳,获得10
21秒前
肖坤完成签到,获得积分10
21秒前
香蕉觅云应助六神曲采纳,获得10
21秒前
斤斤完成签到,获得积分10
24秒前
忧郁发卡完成签到,获得积分10
24秒前
浮游应助桃子采纳,获得10
25秒前
心澄宇静完成签到,获得积分10
26秒前
Summer完成签到 ,获得积分10
27秒前
29秒前
29秒前
你不开花完成签到,获得积分10
29秒前
30秒前
30秒前
33秒前
123发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563756
求助须知:如何正确求助?哪些是违规求助? 4648711
关于积分的说明 14686071
捐赠科研通 4590625
什么是DOI,文献DOI怎么找? 2518701
邀请新用户注册赠送积分活动 1491322
关于科研通互助平台的介绍 1462534