Integrative multi-omics analyses identify molecular subtypes of head and neck squamous cell carcinoma with distinct therapeutic vulnerabilities

头颈部鳞状细胞癌 转录组 头颈部癌 个性化医疗 DNA甲基化 生物信息学 癌症 医学 计算生物学 生物 癌症研究 内科学 基因 生物化学 基因表达
作者
Pengfei Diao,Yibin Dai,An Wang,Xiaoxuan Bu,Ziyu Wang,Jin Li,Yaping Wu,Hongbing Jiang,Yanling Wang,Jie Cheng
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (18): 3101-3117 被引量:3
标识
DOI:10.1158/0008-5472.can-23-3594
摘要

Substantial heterogeneity in molecular features, patient prognoses, and therapeutic responses in head and neck squamous cell carcinomas (HNSCC) highlights the urgent need to develop molecular classifications that reliably and accurately reflect tumor behavior and inform personalized therapy. Here, we leveraged the similarity network fusion bioinformatics approach to jointly analyze multiomics datasets spanning copy number variations, somatic mutations, DNA methylation, and transcriptomic profiling and derived a prognostic classification system for HNSCC. The integrative model consistently identified three subgroups (IMC1-3) with specific genomic features, biological characteristics, and clinical outcomes across multiple independent cohorts. The IMC1 subgroup included proliferative, immune-activated tumors and exhibited a more favorable prognosis. The IMC2 subtype harbored activated EGFR signaling and an inflamed tumor microenvironment with cancer-associated fibroblast/vascular infiltrations. Alternatively, the IMC3 group featured highly aberrant metabolic activities and impaired immune infiltration and recruiting. Pharmacogenomics analyses from in silico predictions and from patient-derived xenograft model data unveiled subtype-specific therapeutic vulnerabilities including sensitivity to cisplatin and immunotherapy in IMC1 and EGFR inhibitors (EGFRi) in IMC2, which was experimentally validated in patient-derived organoid models. Two signatures for prognosis and EGFRi sensitivity were developed via machine learning. Together, this integrative multiomics clustering for HNSCC improves current understanding of tumor heterogeneity and facilitates patient stratification and therapeutic development tailored to molecular vulnerabilities. Significance: Head and neck squamous cell carcinoma classification using integrative multiomics analyses reveals subtypes with distinct genetics, biological features, clinicopathological traits, and therapeutic vulnerabilities, providing insights into tumor heterogeneity and personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala123完成签到,获得积分20
刚刚
刚刚
SciGPT应助研友_8QyXr8采纳,获得10
1秒前
2秒前
2秒前
2秒前
陈隆完成签到,获得积分10
3秒前
lwei发布了新的文献求助10
4秒前
OxO完成签到,获得积分10
4秒前
顾矜应助祯果粒采纳,获得10
5秒前
lalala123发布了新的文献求助10
5秒前
secret完成签到,获得积分10
6秒前
隐形曼青应助LSR采纳,获得10
7秒前
7秒前
8秒前
7123发布了新的文献求助10
8秒前
受伤冰菱发布了新的文献求助30
10秒前
路寻完成签到,获得积分10
10秒前
Hey发布了新的文献求助20
11秒前
从容芮应助陈一昂采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
果子应助CY03采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
文献通发布了新的文献求助10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
123应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得50
13秒前
没有名字应助科研通管家采纳,获得20
13秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462