SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian Trajectory Prediction

计算机科学 行人 图形 弹道 素描 卷积(计算机科学) 人工智能 机器学习 人机交互 理论计算机科学 算法 人工神经网络 天文 运输工程 物理 工程类
作者
Pei Lv,Wentong Wang,Yunxin Wang,Yuzhen Zhang,Mingliang Xu,Changsheng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:14
标识
DOI:10.1109/tnnls.2023.3250485
摘要

Pedestrian trajectory prediction is an important technique of autonomous driving. In order to accurately predict the reasonable future trajectory of pedestrians, it is inevitable to consider social interactions among pedestrians and the influence of surrounding scene simultaneously, which can fully represent the complex behavior information and ensure the rationality of predicted trajectories obeyed realistic rules. In this article, we propose one new prediction model named social soft attention graph convolution network (SSAGCN), which aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments. In detail, when modeling social interaction, we propose a new social soft attention function, which fully considers various interaction factors among pedestrians. Also, it can distinguish the influence of pedestrians around the agent based on different factors under various situations. For the scene interaction, we propose one new sequential scene sharing mechanism. The influence of the scene on one agent at each moment can be shared with other neighbors through social soft attention; therefore, the influence of the scene is expanded both in spatial and temporal dimensions. With the help of these improvements, we successfully obtain socially and physically acceptable predicted trajectories. The experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results. The project code is available at.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的曼香完成签到,获得积分10
1秒前
1秒前
1秒前
pluvia完成签到,获得积分10
2秒前
皮皮完成签到,获得积分10
2秒前
Turew应助jason367采纳,获得10
2秒前
思源应助地表飞猪采纳,获得10
2秒前
3秒前
lomintus发布了新的文献求助10
3秒前
小小蚂蚁给小小蚂蚁的求助进行了留言
4秒前
5秒前
李健应助故意的鸿涛采纳,获得10
5秒前
和谐白云完成签到,获得积分10
6秒前
李爱国应助小憨兔cc采纳,获得10
8秒前
genova发布了新的文献求助10
8秒前
10秒前
wind2631完成签到,获得积分10
12秒前
12秒前
12秒前
wanci应助土豆妮采纳,获得10
13秒前
昏睡的蟠桃给善良的剑通的求助进行了留言
14秒前
15秒前
18秒前
张家小猫发布了新的文献求助10
19秒前
19秒前
清脆若南完成签到,获得积分10
20秒前
21秒前
张小尤完成签到,获得积分10
22秒前
今后应助光亮向露采纳,获得10
22秒前
gwh68964402gwh完成签到,获得积分10
23秒前
24秒前
孤独白拍完成签到 ,获得积分10
24秒前
wang发布了新的文献求助10
25秒前
君莫笑完成签到,获得积分10
25秒前
852应助pan采纳,获得30
25秒前
小马甲应助宝福X暴富采纳,获得10
26秒前
TXNM发布了新的文献求助10
26秒前
27秒前
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3384000
关于积分的说明 10532144
捐赠科研通 3104257
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878