MultiWaveNet: A long time series forecasting framework based on multi-scale analysis and multi-channel feature fusion

计算机科学 时间序列 小波 数据挖掘 频道(广播) 人工智能 冗余(工程) 模式识别(心理学) 机器学习 计算机网络 操作系统
作者
Guangpo Tian,Caiming Zhang,Yufeng Shi,Xuemei Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 124088-124088 被引量:5
标识
DOI:10.1016/j.eswa.2024.124088
摘要

Long time series forecasting is widely used in areas such as power dispatch, traffic control, and weather forecasting. The pattern of seasonality and trends in long time series are often complex, especially when they are presented at different time scales. Existing methods typically focus on only one scale or randomly select scales, which leads to a significant loss of valuable information. Additionally, current methods often transform multi-channel data into a single-channel format, ignoring interactions and complex relationships between channels. The paper proposes MultiWaveNet, a novel long time series forecasting framework that addresses seasonality as well as trends separately. For the seasonal component, the framework uses multi-scale wavelet decomposition to generate subseries at multiple scales. A learnable optimization factor is introduced simultaneously to separate high-frequency components mixed in low-frequency series after wavelet decomposition. In order to reduce information redundancy and model complexity, the paper develops a wavelet domain sampling encoder that consists of just one Transformer encoder, ensuring effective modeling of long-term dependencies while maintaining feature extraction effectiveness. As for the trend component, unlike previous research, the weights of channels are adjusted based on their importance, allowing the more crucial channels to have a greater impact and thereby addressing the limitations of individual processing methods. The paper performs extensive experiments on nine standard datasets, demonstrating that MultiWaveNet is the most competitive method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
new发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
hyhyhyhy发布了新的文献求助20
2秒前
3秒前
77完成签到,获得积分10
4秒前
4秒前
8秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
星辰大海应助王巧儿采纳,获得10
11秒前
专注鸵鸟完成签到,获得积分10
11秒前
斯文败类应助racill采纳,获得10
12秒前
12秒前
strickland完成签到,获得积分10
12秒前
聪明的依风完成签到,获得积分10
12秒前
不过尔尔发布了新的文献求助10
13秒前
蓝天应助三斤采纳,获得10
14秒前
可爱的函函应助YuanF采纳,获得10
18秒前
18秒前
zzr发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
王巧儿发布了新的文献求助10
22秒前
天天天蓝完成签到,获得积分10
23秒前
洁净友瑶完成签到,获得积分10
23秒前
24秒前
cc发布了新的文献求助10
25秒前
浮游应助xiaobai采纳,获得10
26秒前
浮游应助三斤采纳,获得10
27秒前
bobo完成签到 ,获得积分10
27秒前
28秒前
等待的契机完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
ccc完成签到,获得积分10
30秒前
慕青应助懒羊羊采纳,获得10
31秒前
hangzhen发布了新的文献求助10
31秒前
Csy完成签到,获得积分10
32秒前
33秒前
zizi发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4648638
求助须知:如何正确求助?哪些是违规求助? 4037208
关于积分的说明 12487415
捐赠科研通 3727088
什么是DOI,文献DOI怎么找? 2057076
邀请新用户注册赠送积分活动 1088083
科研通“疑难数据库(出版商)”最低求助积分说明 969272