Intelligent Marine Survey: Lightweight Multi-Scale Attention Adaptive Segmentation Framework for Underwater Target Detection of AUV

水下 计算机科学 比例(比率) 分割 海洋工程 人工智能 遥控水下航行器 工程类 地质学 移动机器人 机器人 海洋学 物理 量子力学
作者
Qi Wang,Yixiao Zhang,Bo He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tase.2024.3371963
摘要

Accurate and automatic underwater target recognition is a compelling challenge for autonomous underwater vehicles (AUVs) in intelligent marine surveys. This study proposed a seabed target correction model based on side-scan sonar (SSS) images and combined the navigation information of AUV to achieve pixel-level geocoding. Moreover, a lightweight multi-level attention adaptive segmentation framework $^{^{^{^{}}}}$ ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) was proposed to achieve fine-grained recognition. It contains three new modules: 1) The lightweight attention network (LAN) is designed as the baseline to obtain dense feature maps and focus on interesting features based on a balanced attention mechanism. 2) the multi-scale feature pyramid (MASPP) was then constructed to capture the context of SSS images and extract rich semantic information at high levels. 3) Finally, the adaptive feature fusion module (AFF) effectively incorporates feature maps of MASPP and spatial information to improve the learned representations further. Extensive experiments are verified on six SSS categories and show the remarkable performance of the ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ compared with state-of-the-art methods. Furthermore, real sea trials were conducted by deploying ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ to the autonomous target recognition (ATR) system of AUV, which can achieve 29.7 fps and 81.23% MIoU for a ( $512\times 512$ ) input on a single Nvidia Jetson Xavier. Note to Practitioners —This paper aims to provide a real-time semantic segmentation model for the autonomous target detection of AUV, which is suitable for the autonomous detection of underwater targets by underwater robots (ROV, AUV, ARV, et al). This paper proposes a lightweight, multi-scale attention-adaptive segmentation framework ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) incorporating pixel-level seabed targets rectification methods. The algorithm has high segmentation accuracy and fast operation speed. It can identify seabed targets in high-resolution sonar images online and realize precise positioning of small seabed targets, which is conducive to improving the intelligence level of marine survey unmanned equipment. This paper details the design of ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ and the hardware structure of the autonomous target recognition system (ATR). Plenty of simulation experiments and sea trials have proved the efficiency and practicability of the method for the autonomous detection of different seabed targets (sand waves, coral reefs, metal balls, threads, and artificial reefs). Future research will verify the generalization of the algorithm in more seabed targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷孤风完成签到,获得积分10
刚刚
Lucas应助kun采纳,获得10
刚刚
刚刚
蓝蓝蓝完成签到,获得积分10
1秒前
小张在努力完成签到,获得积分10
1秒前
思源应助可乐采纳,获得10
2秒前
Shanshan发布了新的文献求助10
2秒前
lucaswen发布了新的文献求助10
2秒前
单薄忆梅发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
lxp完成签到,获得积分20
4秒前
4秒前
4秒前
宁幼萱发布了新的文献求助10
4秒前
风吹麦田应助卓荦采纳,获得10
4秒前
5秒前
5秒前
5秒前
彭于晏应助张梦佳采纳,获得10
6秒前
虚心的岩发布了新的文献求助10
8秒前
9秒前
9秒前
冲冲冲啊发布了新的文献求助10
9秒前
nana发布了新的文献求助10
10秒前
ZD发布了新的文献求助10
10秒前
酷波er应助开朗艳一采纳,获得10
10秒前
11秒前
Chen发布了新的文献求助10
11秒前
灵犀完成签到,获得积分10
13秒前
13秒前
CipherSage应助尊敬秋双采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
灵巧的晓山完成签到,获得积分20
14秒前
黑犬完成签到,获得积分10
14秒前
15秒前
朴素飞薇完成签到 ,获得积分10
15秒前
老阎应助dxm采纳,获得20
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820683
求助须知:如何正确求助?哪些是违规求助? 3363576
关于积分的说明 10423882
捐赠科研通 3081997
什么是DOI,文献DOI怎么找? 1695408
邀请新用户注册赠送积分活动 815083
科研通“疑难数据库(出版商)”最低求助积分说明 768856