Machine learning modeling to predict causes of infectious abortion and perinatal mortalities in cattle

流产 生物 病毒学 兽医学 医学 怀孕 遗传学
作者
Gonzalo Villa‐Cox,H. Van Loo,Stijn Speelman,Stefaan Ribbens,J. Hooyberghs,Bart Pardon,G. Opsomer,Osvaldo Bogado Pascottini
出处
期刊:Theriogenology [Elsevier BV]
卷期号:226: 20-28 被引量:2
标识
DOI:10.1016/j.theriogenology.2024.05.041
摘要

A plethora of infectious and non-infectious causes of bovine abortions and perinatal mortalities (APM) have been reported in literature. However, due to financial limitations or a potential zoonotic impact, many laboratories only offer a standard analytical panel, limited to a preestablished number of pathogens. To improve the cost-efficiency of laboratory diagnostics, it could be beneficial to design a targeted analytical approach for APM cases, based on maternal and environmental characteristics associated with the prevalence of specific abortifacient pathogens. The objective of this retrospective observational study was to implement a machine learning pipeline (MLP) to predict maternal and environmental factors associated with infectious APM. Our MLP based on a greedy ensemble approach incorporated a standard tuning grid of four models, applied on a dataset of 1590 APM cases with a positive diagnosis that was achieved by analyzing an extensive set of abortifacient pathogens. Production type (dairy/beef), gestation length, and season were successfully predicted by the greedy ensemble, with a modest prediction capacity which ranged between 63 and 73 %. Besides the predictive accuracy of individual variables, our MLP hierarchically identified predictor importance causes of associated environmental/maternal characteristics of APM. For instance, in APM cases that happened in beef cows, season at APM (spring/summer) was the most important predictor with a relative importance of 24 %. Furthermore, at the last trimester of gestation Trueperella pyogenes and Neospora caninum were the most important predictors of APM with a relative importance of 22 and 17 %, respectively. Interestingly, herd size came out as the most relevant predictor for APM in multiparous dams, with a relative importance of 12 %. Based on these and other mix of predicted environmental/maternal and pathogenic potential causes, it could be concluded that implementing our MLP may be beneficial to design a more cost-effective, case-specific diagnostic approach for bovine APM cases at the diagnostic laboratory level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jaylou完成签到,获得积分10
1秒前
Zhuzhu完成签到 ,获得积分10
1秒前
年轻千愁完成签到 ,获得积分10
3秒前
6秒前
AURORA丶完成签到 ,获得积分10
6秒前
cquank完成签到,获得积分10
6秒前
yellow完成签到 ,获得积分10
7秒前
7秒前
丰富的硬币完成签到,获得积分10
7秒前
7秒前
甲基醚完成签到 ,获得积分10
7秒前
8秒前
曾泳钧完成签到,获得积分10
8秒前
Fang完成签到,获得积分10
9秒前
橘灯完成签到,获得积分10
10秒前
可爱的小树苗完成签到,获得积分10
11秒前
枯叶蝶发布了新的文献求助10
11秒前
胡杨树2006完成签到,获得积分10
11秒前
12秒前
大模型应助科研通管家采纳,获得10
13秒前
橘灯发布了新的文献求助10
13秒前
凊嗏淡墨完成签到,获得积分10
13秒前
大鲨鱼完成签到 ,获得积分10
14秒前
张亚慧完成签到 ,获得积分10
14秒前
不安之桃发布了新的文献求助10
14秒前
清新的易真完成签到,获得积分10
14秒前
fishss完成签到 ,获得积分10
15秒前
18秒前
鲁卓林完成签到,获得积分10
19秒前
谨慎纸飞机完成签到,获得积分10
20秒前
轻歌水越完成签到 ,获得积分10
21秒前
夜信完成签到,获得积分10
22秒前
跳跃卿完成签到 ,获得积分10
22秒前
pingli发布了新的文献求助50
22秒前
weiwei完成签到 ,获得积分10
23秒前
顺心醉蝶完成签到 ,获得积分10
25秒前
26秒前
aa完成签到,获得积分10
28秒前
庄怀逸完成签到 ,获得积分10
28秒前
soory完成签到,获得积分10
30秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811756
求助须知:如何正确求助?哪些是违规求助? 3356060
关于积分的说明 10379357
捐赠科研通 3073013
什么是DOI,文献DOI怎么找? 1688201
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893