Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem

水准点(测量) 粒子群优化 趋同(经济学) 群体行为 计算机科学 比例(比率) 数学优化 人口 最优化问题 帝国主义竞争算法 进化算法 元启发式 多群优化 数学 物理 大地测量学 社会学 人口学 经济 地理 量子力学 经济增长
作者
Chen Huang,Xiangbing Zhou,Xiaojuan Ran,Yi Liu,Wuquan Deng,Wu Deng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:619: 2-18 被引量:118
标识
DOI:10.1016/j.ins.2022.11.019
摘要

Practical optimization problems often involve a large number of variables, and solving them in a reasonable amount of time becomes a challenge. Competitive swarm optimizer (CSO) is an efficient variant of particle swarm optimization (PSO) algorithm and has been applied extensively to deal with a variety of practical large-scale optimization problems. In this article, a novel co-evolutionary method with three-phase, namely TPCSO, is developed by incorporating a novel multi-phase cooperative evolutionary technique to enhance the convergence and the search ability of CSO. In the modified CSO, the population is evenly decomposed into two sub-populations, then the update strategy of each sub-population is adjusted by the requirements of the diversity and convergence during the evolution process. In the first phase, the diversity is paid more attention in order to explore more regions. And in the second phase, the promising area in two sub-populations are exploited by introducing excellent particles of two sub-populations. The third phase focuses on the convergence by learning from the global best solution. Finally, the performance of TPCSO is evaluated and proved by large-scale benchmark functions selected from CEC’2010 and CEC’2013. The experimental and statistical results show that TPCSO can effectively solve these large-scale problems and fast obtain the optimal results with higher accuracy by comparing with several algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴图图完成签到,获得积分10
1秒前
1秒前
111完成签到,获得积分10
2秒前
ding应助Siriluck采纳,获得10
3秒前
3秒前
jeitt发布了新的文献求助10
4秒前
4秒前
bkagyin应助aaaaaa采纳,获得10
4秒前
小蘑菇应助阿阿阿阿冀采纳,获得10
4秒前
腰果虾仁发布了新的文献求助10
5秒前
卓梨发布了新的文献求助10
5秒前
6秒前
6秒前
希望天下0贩的0应助文青采纳,获得10
7秒前
7秒前
ZhouYW应助O已w时o采纳,获得10
8秒前
郭宇轩发布了新的文献求助10
8秒前
8秒前
小胡完成签到,获得积分10
9秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
人间沼泽发布了新的文献求助10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
北风应助科研通管家采纳,获得10
10秒前
10秒前
xzy998应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
万能图书馆应助科研通管家采纳,获得150
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
领导范儿应助小施采纳,获得10
11秒前
xzy998应助科研通管家采纳,获得30
11秒前
大个应助科研通管家采纳,获得10
11秒前
12秒前
HUUU发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178