A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 放射科
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:40 (4): 1197-1205 被引量:25
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lumin发布了新的文献求助10
刚刚
悦悦呀发布了新的文献求助10
2秒前
初心完成签到,获得积分10
3秒前
苗苗完成签到,获得积分10
4秒前
4秒前
黑黑嘿完成签到,获得积分20
4秒前
4秒前
The_last发布了新的文献求助10
5秒前
花某人发布了新的文献求助10
5秒前
难过的谷芹应助SUMING采纳,获得10
5秒前
科研通AI6应助彪壮的绮烟采纳,获得10
6秒前
只只完成签到,获得积分10
6秒前
自觉平露完成签到,获得积分10
7秒前
8秒前
jwxstc完成签到,获得积分10
8秒前
小鱼关注了科研通微信公众号
9秒前
性静H情逸完成签到,获得积分10
9秒前
sunxs发布了新的文献求助10
10秒前
情怀应助黑黑嘿采纳,获得10
10秒前
10秒前
ll200207完成签到,获得积分20
10秒前
花某人完成签到,获得积分20
10秒前
斯文败类应助任性的一斩采纳,获得10
11秒前
lumin完成签到,获得积分0
11秒前
爱科研发布了新的文献求助10
11秒前
jwxstc发布了新的文献求助10
11秒前
白问安完成签到,获得积分10
12秒前
12秒前
彭于晏应助鹂鹂复霖霖采纳,获得10
13秒前
16bit完成签到,获得积分10
13秒前
14秒前
研友_892kOL完成签到,获得积分10
14秒前
wwyy应助科研通管家采纳,获得10
14秒前
fifteen应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726526
求助须知:如何正确求助?哪些是违规求助? 4083718
关于积分的说明 12629857
捐赠科研通 3790124
什么是DOI,文献DOI怎么找? 2093145
邀请新用户注册赠送积分活动 1118875
科研通“疑难数据库(出版商)”最低求助积分说明 995311