Multiclass weed identification using semantic segmentation: An automated approach for precision agriculture

杂草 计算机科学 精准农业 杂草防治 鉴定(生物学) 水准点(测量) 分割 人工智能 领域(数学) 农业工程 机器学习 农业 数学 工程类 农学 生态学 地理 地图学 生物 纯数学
作者
Sanjay Kumar Gupta,Shivam Yadav,Sanjay Kumar Soni,Udai Shanker,Pradeep Kumar Singh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102366-102366 被引量:24
标识
DOI:10.1016/j.ecoinf.2023.102366
摘要

Accurate identification and categorization of numerous weed species are critical for implementing effective control measures and management methods in precision agriculture. Manual weed treatment is time-consuming, labor-intensive, and poses risks of human pesticide exposure. Therefore, the development of automated weed management systems is highly desirable. This study aims to propose an automated approach for multiclass weed identification using semantic segmentation, with the goal of improving weed control techniques, reducing pesticide usage, and enhancing crop yields in a sustainable manner. To address the research objective, we created a novel multiclass weed dataset, focusing on two weed categories found in a brinjal farm located in Gorakhpur, Uttar Pradesh, India during the 2022 field seasons. The dataset covers various developmental phases and was captured under ambient lighting conditions. Leveraging transfer learning, we evaluated four advanced deep learning models to establish a benchmark for weed identification. Among the evaluated models, the U-Net-based Inception-ReseNetV2 achieved the highest F1-score of 96.78%, while the other three models attained F1-scores above 91.0%. These findings demonstrate the efficacy of the proposed approach in accurately identifying and categorizing weeds in agricultural fields. The results of this research provide a foundation for further investigations on weed detection and localization in field environments. The use of semantic segmentation for multiclass weed identification can significantly enhance the efficiency and effectiveness of weed management operations, resulting in reduced pesticide usage and improved crop yields. By adopting automated weed management systems, farmers can minimize labor requirements, save time, and mitigate the risks associated with human pesticide exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JiangYifan发布了新的文献求助10
1秒前
1秒前
bb完成签到,获得积分10
1秒前
666plus发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助SZY采纳,获得10
3秒前
开拓者完成签到,获得积分10
3秒前
刘虹发布了新的文献求助10
3秒前
3秒前
思源应助点凌蝶采纳,获得200
3秒前
天真如松发布了新的文献求助10
4秒前
Akim应助浮浮世世采纳,获得10
4秒前
在水一方应助VitoLi采纳,获得10
5秒前
李小聪发布了新的文献求助10
6秒前
小马甲应助luchang123qq采纳,获得20
7秒前
Hello应助Eurus采纳,获得30
7秒前
7秒前
科研通AI6应助zhenqiqin采纳,获得10
8秒前
9秒前
9秒前
羊肉泡馍完成签到,获得积分10
10秒前
传奇3应助bamboo采纳,获得10
10秒前
小胖胖发布了新的文献求助10
10秒前
科研通AI6应助九月采纳,获得10
12秒前
忐忑的草丛完成签到,获得积分10
12秒前
13秒前
wml完成签到,获得积分10
13秒前
13秒前
14秒前
搜集达人应助李小聪采纳,获得10
14秒前
lcy完成签到,获得积分10
15秒前
沉淀发布了新的文献求助30
15秒前
Lucas应助Dorren采纳,获得10
15秒前
xxxnnn发布了新的文献求助10
16秒前
shaychomac完成签到,获得积分10
17秒前
18秒前
rzyzen完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536113
求助须知:如何正确求助?哪些是违规求助? 4623850
关于积分的说明 14589594
捐赠科研通 4564365
什么是DOI,文献DOI怎么找? 2501687
邀请新用户注册赠送积分活动 1480494
关于科研通互助平台的介绍 1451779