A spatiotemporally weighted intelligent method for exploring fine-scale distributions of surface dissolved silicate in coastal seas

生物地球化学循环 环境科学 水华 经验正交函数 地表水 比例(比率) 台风 浮游植物 遥感 海洋学 地质学 气候学 环境化学 环境工程 物理 营养物 有机化学 化学 量子力学
作者
Jin Qi,Zhenhong Du,Sensen Wu,Yijun Chen,Yuanyuan Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:886: 163981-163981 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.163981
摘要

The transfer of dissolved silicate (DSi) from land to coastal environments is a crucial part of global biogeochemical cycling. However, the retrieval of coastal DSi distribution is challenging due to the spatiotemporal non-stationarity and nonlinearity of modeling processes and the low resolution of in situ sampling. To explore the coastal DSi changes in a higher spatiotemporal resolution, this study developed a spatiotemporally weighted intelligent method based on a geographically and temporally neural network weighted regression (GTNNWR) model, a Data-Interpolating Empirical Orthogonal Functions (DINEOF) model, and satellite observations. For the first time, the complete surface DSi concentrations of 2182 days at the 500-meter and 1-day resolution in the coastal sea of Zhejiang Province, China, were obtained (Testing R2 = 78.5 %) by using 2901 in situ records with concurrent remote sensing reflectance. The long-term and large-scale distributions of DSi reflected the changes in coastal DSi under the influences of rivers, ocean currents, and biological effects across multiple spatiotemporal scales. Benefiting from the high-resolution modeling, this study found that the surface DSi concentration had at least 2 declines during a diatom bloom process, which can provide crucial signals for the timely monitoring and early warning of diatom blooms and guide the management of eutrophication. It was also indicated that the correlation coefficient between the monthly DSi concentration and the Yangtze River Diluted Water velocities reached -0.462**, quantitatively revealing the significant influence of the terrestrial input. In addition, the daily-scale DSi fluctuations resulting from typhoon transits were finely characterized, which greatly reduces the monitoring cost compared with the field sampling. Therefore, this study developed an effective data-driven-based method to help explore the fine-scale dynamic changes of surface DSi in coastal seas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luo完成签到,获得积分10
刚刚
123456完成签到,获得积分10
1秒前
谢同学完成签到,获得积分10
2秒前
李晓萌发布了新的文献求助10
2秒前
小谢完成签到,获得积分10
2秒前
Jasper应助李李05采纳,获得10
2秒前
开开心心的开心完成签到,获得积分10
4秒前
俏皮的松鼠完成签到 ,获得积分10
4秒前
sdl发布了新的文献求助10
5秒前
33发布了新的文献求助10
5秒前
小天才完成签到,获得积分20
7秒前
岚羽完成签到 ,获得积分10
8秒前
qq158014169完成签到 ,获得积分10
8秒前
项听蓉完成签到,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
无餍应助科研通管家采纳,获得20
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
无餍应助科研通管家采纳,获得10
11秒前
myg123完成签到 ,获得积分10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
吹雪完成签到,获得积分0
12秒前
田様应助WJ采纳,获得10
12秒前
美满的泥猴桃完成签到 ,获得积分10
13秒前
小毛毛想睡觉完成签到 ,获得积分10
14秒前
心想事成发布了新的文献求助10
15秒前
Eliauk完成签到,获得积分10
16秒前
苦咖啡行僧完成签到 ,获得积分10
18秒前
热心的善愁完成签到,获得积分10
20秒前
WJ完成签到,获得积分10
21秒前
Andorchid完成签到,获得积分10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308