计算机科学
失真(音乐)
人工智能
块(置换群论)
质量(理念)
图像质量
质量得分
感知
平均意见得分
图像(数学)
模式识别(心理学)
计算复杂性理论
机器学习
计算机视觉
数据挖掘
算法
数学
公制(单位)
几何学
哲学
认识论
生物
经济
神经科学
放大器
带宽(计算)
计算机网络
运营管理
作者
N. Venkatanath,D Praneeth,Maruthi Chandrasekhar Bh,Sumohana S. Channappayya,Swarup Medasani
标识
DOI:10.1109/ncc.2015.7084843
摘要
This paper proposes a novel no-reference Perception-based Image Quality Evaluator (PIQUE) for real-world imagery. A majority of the existing methods for blind image quality assessment rely on opinion-based supervised learning for quality score prediction. Unlike these methods, we propose an opinion unaware methodology that attempts to quantify distortion without the need for any training data. Our method relies on extracting local features for predicting quality. Additionally, to mimic human behavior, we estimate quality only from perceptually significant spatial regions. Further, the choice of our features enables us to generate a fine-grained block level distortion map. Our algorithm is competitive with the state-of-the-art based on evaluation over several popular datasets including LIVE IQA, TID & CSIQ. Finally, our algorithm has low computational complexity despite working at the block-level.
科研通智能强力驱动
Strongly Powered by AbleSci AI