CardiacSeg: Customized Pre-training Volumetric Transformer with Scaling Pyramid for 3D Cardiac Segmentation

计算机科学 变压器 棱锥(几何) 人工智能 分割 缩放比例 计算机视觉 计算机图形学(图像) 模式识别(心理学) 电气工程 数学 几何学 工程类 电压
作者
Zhiyu Ye,Hairong Zheng,Tong Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-14
标识
DOI:10.1007/978-3-031-52448-6_1
摘要

Congenital heart disease (CHD) is the most common type of birth defect and a leading cause of death worldwide. The volumetric segmentation of the whole heart anatomy serves as a basic step towards accurate diagnosis and treatment planning for CHD patients. Although deep learning segmentation networks can be powerful tools, it is still very challenging to apply them to CHD images due to the complex nature of the defect and the limited availability of training data and annotations. In this paper, we present CardiacSeg, a volumetric transformer for 3D cardiac image segmentation with masked image pre-training. Following the classic “U-shaped” encoder-decoder architecture, CardiacSeg is composed of a vision transformer (ViT) encoder, a scaling feature pyramid and a convolutional neural network decoder. Specifically, the scaling pyramid is generated solely from the output of the last layer of the encoder, and converts the single-scale feature map into a multi-scale representation, thereby enabling the decoder to effectively reconstruct the segmentation results. We evaluated our pre-trained ViT backbone and downstream segmentation network on the 3D Computed Tomography Image Dataset for CHD (ImageCHD) and the Multi-Modality Whole Heart Segmentation Challenge (MM-WHS) dataset. To further validate the few-shot learning ability, we conduct comparison experiments using a randomly sampled 10%-subset of the training data. Experimental results show that CardiacSeg outperforms five benchmark models, particularly in the few-shot learning scenario. The codes will be open-sourced to https://openi.pcl.ac.cn/OpenMedIA/CardiacSeg .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助鱼鱼采纳,获得10
1秒前
知止完成签到,获得积分20
2秒前
Ayuyu发布了新的文献求助10
4秒前
Xieyusen发布了新的文献求助10
6秒前
7秒前
钱来完成签到,获得积分10
9秒前
小蘑菇应助初余采纳,获得10
9秒前
鹿c3完成签到,获得积分10
10秒前
幽默宛亦发布了新的文献求助10
12秒前
16秒前
17秒前
17秒前
AAA完成签到,获得积分10
18秒前
19秒前
顾矜应助ahu采纳,获得30
21秒前
Cindy发布了新的文献求助30
21秒前
22秒前
23秒前
伍六七完成签到,获得积分10
23秒前
白羽佳发布了新的文献求助30
28秒前
Cindy完成签到,获得积分10
28秒前
从容道罡完成签到,获得积分10
28秒前
poppysss完成签到,获得积分10
29秒前
科研通AI2S应助JiegeSCI采纳,获得10
30秒前
36秒前
俊鱼完成签到,获得积分10
36秒前
JJ完成签到,获得积分10
37秒前
Krim完成签到 ,获得积分10
38秒前
妇产科医生完成签到 ,获得积分10
39秒前
to高坚果发布了新的文献求助10
40秒前
水木年华完成签到,获得积分10
41秒前
WindDreamer完成签到,获得积分10
41秒前
兰天完成签到,获得积分10
41秒前
傲娇的雁菱完成签到,获得积分10
41秒前
阿甘完成签到,获得积分10
42秒前
白羽佳完成签到,获得积分20
44秒前
Ava应助无语的冷风采纳,获得10
46秒前
jiangqin123完成签到 ,获得积分10
46秒前
lilacs完成签到 ,获得积分10
46秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409