Fracture mechanisms of NCM polycrystalline particles in lithium-ion batteries: A review

锂(药物) 微晶 断裂(地质) 材料科学 离子 法律工程学 复合材料 化学 冶金 工程类 心理学 精神科 有机化学
作者
Kexin Mao,Yiming Yao,Ying Chen,Wei Li,Xiaojie Shen,Jinyang Song,Haofeng Chen,Weiling Luan,Kai Wu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:84: 110807-110807 被引量:23
标识
DOI:10.1016/j.est.2024.110807
摘要

The development of high-energy LiNixCoyMnzO2 (NCM) cathode materials for lithium-ion batteries (LIBs) is central to many emerging technologies in the fields of power and energy storage. However, the limited cycle life of batteries caused by electrochemical and mechanical damage of NCM polycrystalline particles remains a crucial barrier to their applications. During the charging and discharging of batteries, the insertion and extraction of lithium-ions within the active particles induce diffusion-induced stresses, resulting in the fracture of NCM particles, which ultimately leads to a decline in the overall battery performance. In this review, the fracture mechanisms of NCM polycrystalline particles are systematically summarized, and the internal and intergranular defects in primary particles are comprehensively discussed, including dislocations, nanoscale pores, cation mixing oxygen vacancies grain boundaries and porosity. The influences of stress concentration, which occurs due to phase transitions, changes in the crystal structure and anisotropic volume variations during the insertion and extraction of lithium-ions, are also summarized in this work. These factors are the key to the initiation and propagation processes of intergranular and intragranular cracks in NCM polycrystalline particles. Finally, this review also aims to address the observation methods and existing research gaps related to the fracture damage mechanisms of NCM polycrystalline particles, which provide further assistance for the optimization design of NCM cathode materials and the precise prediction of battery performance degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Agoni完成签到,获得积分10
2秒前
野性的乌冬面完成签到,获得积分10
3秒前
gs19960828发布了新的文献求助10
4秒前
恒恒完成签到,获得积分10
4秒前
lmg关注了科研通微信公众号
4秒前
笨笨芯应助Anxin采纳,获得10
5秒前
6秒前
正直丹寒发布了新的文献求助10
6秒前
司空宛儿发布了新的文献求助10
6秒前
易如反掌完成签到,获得积分10
7秒前
ding应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
酸奶冻完成签到,获得积分10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
善学以致用应助黄家乐采纳,获得10
7秒前
科研通AI5应助fangqiao采纳,获得10
8秒前
彭于晏应助aaashirz_采纳,获得10
9秒前
积极方盒完成签到,获得积分10
9秒前
pluto应助易如反掌采纳,获得10
10秒前
徐长卿完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
keyaner完成签到,获得积分10
13秒前
15秒前
111应助盼盼采纳,获得10
15秒前
科研通AI5应助矫仁瑞采纳,获得10
15秒前
16秒前
16秒前
16秒前
16秒前
歪歪扣叉发布了新的文献求助10
18秒前
18秒前
没有昵称完成签到,获得积分10
18秒前
吴晨曦完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829789
求助须知:如何正确求助?哪些是违规求助? 3372428
关于积分的说明 10472164
捐赠科研通 3091946
什么是DOI,文献DOI怎么找? 1701597
邀请新用户注册赠送积分活动 818501
科研通“疑难数据库(出版商)”最低求助积分说明 770925