Enabling Collaborative Test-Time Adaptation in Dynamic Environment via Federated Learning

适应(眼睛) 计算机科学 考试(生物学) 人机交互 分布式计算 古生物学 物理 光学 生物
作者
Jiayuan Zhang,Xuefeng Liu,Yukang Zhang,Guogang Zhu,Jianwei Niu,Shaojie Tang
标识
DOI:10.1145/3637528.3671908
摘要

Deep learning models often suffer performance degradation when test data diverges from training data. Test-Time Adaptation (TTA) aims to adapt a trained model to the test data distribution using unlabeled test data streams. In many real-world applications, it is quite common for the trained model to be deployed across multiple devices simultaneously. Although each device can execute TTA independently, it fails to leverage information from the test data of other devices. To address this problem, we introduce Federated Learning (FL) to TTA to facilitate on-the-fly collaboration among devices during test time. The workflow involves clients (i.e., the devices) executing TTA locally, uploading their updated models to a central server for aggregation, and downloading the aggregated model for inference. However, implementing FL in TTA presents many challenges, especially in establishing inter-client collaboration in dynamic environment, where the test data distribution on different clients changes over time in different manners. To tackle these challenges, we propose a server-side Temporal-Spatial Aggregation (TSA) method. TSA utilizes a temporal-spatial attention module to capture intra-client temporal correlations and inter-client spatial correlations. To further improve robustness against temporal-spatial heterogeneity, we propose a heterogeneity-aware augmentation method and optimize the module using a self-supervised approach. More importantly, TSA can be implemented as a plug-in to TTA methods in distributed environments. Experiments on multiple datasets demonstrate that TSA outperforms existing methods and exhibits robustness across various levels of heterogeneity. The code is available at https://github.com/ZhangJiayuan-BUAA/FedTSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈密瓜牛奶完成签到,获得积分10
1秒前
1秒前
梓枫完成签到,获得积分10
2秒前
橙子发布了新的文献求助30
3秒前
yuyan发布了新的文献求助10
3秒前
XXX完成签到,获得积分10
6秒前
young发布了新的文献求助10
8秒前
8秒前
10秒前
Chocolate发布了新的文献求助10
11秒前
jenningseastera应助简单河马采纳,获得30
13秒前
qqqqqq发布了新的文献求助10
15秒前
胡多完成签到 ,获得积分10
17秒前
搜集达人应助whitedawn采纳,获得10
17秒前
Chocolate完成签到,获得积分10
17秒前
emile发布了新的文献求助10
18秒前
赘婿应助dgsxl采纳,获得10
18秒前
20秒前
21秒前
研友_VZG7GZ应助sunzhuxi采纳,获得10
24秒前
不不发布了新的文献求助10
24秒前
25秒前
25秒前
mm发布了新的文献求助20
28秒前
风中黎昕完成签到 ,获得积分10
29秒前
happyccch发布了新的文献求助30
30秒前
30秒前
温暖的靖发布了新的文献求助10
31秒前
32秒前
33秒前
哈桑士发布了新的文献求助20
33秒前
sunzhuxi发布了新的文献求助10
34秒前
35秒前
36秒前
37秒前
薛雨佳发布了新的文献求助10
37秒前
滔滔完成签到,获得积分10
38秒前
彬子发布了新的文献求助10
38秒前
39秒前
39秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829200
求助须知:如何正确求助?哪些是违规求助? 3371893
关于积分的说明 10469615
捐赠科研通 3091524
什么是DOI,文献DOI怎么找? 1701149
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770753