Enhancing quantum cascade laser active region design through inverse neural networks: A machine learning approach to metric-based structure generation

级联 公制(单位) 反向 人工神经网络 量子 计算机科学 激光器 量子级联激光器 人工智能 物理 光学 数学 工程类 量子力学 化学工程 运营管理 几何学
作者
Y. Hu,Suraj Suri,Jeremy Kirch,B. Knipfer,Steven A. Jacobs,Z. Yu,D. Botez,L. J. Mawst
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (10)
标识
DOI:10.1063/5.0227270
摘要

In this study, we introduce an automated design method for Quantum Cascade Laser (QCL) active region (AR) structure employing a generative neural network, termed an inverse network, which creates the structure designs based on specific k · p metric inputs related to device performance. The training dataset, derived from an earlier study, was selectively filtered to remove entries affected by energy-level hybridization or splitting, yielding ∼300 000 valid entries. A pre-trained forward network that processes QCL-AR structures and returns corresponding k · p metrics serves as the evaluator for the inverse network, supplanting traditional loss functions such as mean squared error or mean absolute error. This strategy overcomes the problem of non-uniqueness in the mapping from k · p metrics to QCL-AR structures. The inverse network incorporates a random layer, allowing it to produce a variety of QCL-AR structures from identical predicted metrics, thereby increasing the model’s practicality. Performance testing indicates high accuracy in the metrics of the generated QCL-AR structures, with the coefficient of determination, R2 scores, for key energy-level differences between the upper-laser (ul) level and the lower-laser level, E43, and between the next-higher-energy level above the ul level and the ul level, E54, of 0.9153 and 0.9701, respectively; and for the electron lifetimes τ43 and τ54 of 0.9568 and 0.9175. As an example, we show how the network generates a QCL-AR structure with the potential for low threshold-current density by suppressing shunt-type carrier leakage from the ul level through a higher energy AR state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛语琴完成签到,获得积分10
1秒前
12121发布了新的文献求助10
3秒前
Kenny发布了新的文献求助10
4秒前
syy080837发布了新的文献求助10
6秒前
星辰大海应助埃森采纳,获得10
10秒前
Kenny完成签到,获得积分10
12秒前
学术混子雷雷雷雷雷完成签到,获得积分10
15秒前
huang完成签到,获得积分10
16秒前
20秒前
往事不可挽回完成签到 ,获得积分10
22秒前
王英俊完成签到,获得积分10
24秒前
小马甲应助GongSyi采纳,获得10
26秒前
梧桐发布了新的文献求助10
26秒前
土豆丝关注了科研通微信公众号
28秒前
syy080837完成签到,获得积分10
30秒前
wxyshare举报小巧初露求助涉嫌违规
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
孙_boss完成签到 ,获得积分10
31秒前
Mic应助科研通管家采纳,获得10
31秒前
31秒前
浮游应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
Mic应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
Verity应助科研通管家采纳,获得10
32秒前
ysl应助科研通管家采纳,获得10
32秒前
Mic应助科研通管家采纳,获得10
32秒前
Bsisoy完成签到,获得积分10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
32秒前
浮游应助科研通管家采纳,获得10
32秒前
宅多点应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915