俯冲
地质学
榴辉岩
大陆地壳
大陆碰撞
岩石圈
埃达克岩
地幔(地质学)
碰撞带
地球物理学
底镀
大洋地壳
地球科学
地震学
构造学
作者
Yang Wang,Zhong‐Hai Li,Pengpeng Huangfu
摘要
Abstract The contrasting fates of collisional orogens, i.e., continental deep subduction or subduction cessation, are widely recognized by petrological, paleomagnetic and geophysical observations. However, the mechanisms of such different collisional modes, especially the dynamics of continental deep subduction, are controversial. In this study, we integrate the phase transition‐induced density evolution into a thermo‐mechanical numerical model. Combing the systematic petrological‐thermo‐mechanical models with force balance analyses, we find that the high metamorphic transformation degree, mildly depleted mantle composition of the subcontinental lithosphere, and a long preceding oceanic slab, increase the driving force for continental deep subduction. Additionally, the rheologically weak continental crust and asthenospheric mantle decrease the resistance force and promote deep subduction. Otherwise, the continental subduction cessation mode is favored. The calculations of slab negative buoyancy indicate that the phase transition‐induced metamorphic densification of the subducted continental crust and the mildly to moderately depleted lithospheric mantle can provide a great slab pull force to sustain the continued continental deep subduction; however, the positive buoyancy of highly depleted Archean lithospheric mantle impedes deep subduction and causes subduction cessation. Based on systematic numerical models, we also evaluate the crustal mass balance or deficit in continental collisional system, which indicates that ∼12%‐47% of pre‐collisional felsic crust could be subducted deeply with the sinking slab in the regime of continental deep subduction. In contrast, the recycled felsic crust is negligible in the regime of subduction cessation. Thus, the different modes of continental collision play a crucial role in the global crustal recycling and related mantle heterogeneities. This article is protected by copyright. All rights reserved.
科研通智能强力驱动
Strongly Powered by AbleSci AI