Fast Multi-view Subspace Clustering with Balance Anchors Guidance

聚类分析 计算机科学 离群值 数据挖掘 子空间拓扑 高维数据聚类 原始数据 嵌入 人工智能 噪音(视频) 机器学习 图像(数学) 程序设计语言
作者
Yong Mi,Hongmei Chen,Zhong Yuan,Chuan Luo,Shi–Jinn Horng,Tianrui Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109895-109895 被引量:10
标识
DOI:10.1016/j.patcog.2023.109895
摘要

Multi-view subspace clustering (MVSC) has acquired satisfactory clustering performance since it effectively integrates the information from multiple views. However, existing MVSC methods often suffer from high time costs and are difficult to be used in real-life large-scale data. Anchor-based MVSC methods have been presented to select crucial landmarks to reduce time-consuming effectively. In addition, the processes of anchor selection of existing methods are performed in the raw space, in which the high-dimensional data often involve lots of noise information and outliers that inevitably lead to the degradation of clustering performance. Moreover, these methods also ignore the balance structure of data, such that the selected anchors can not fully characterize the intrinsic structure information of the original data. To tackle the aforementioned issues, we present a novel MVSC method named Fast Multi-view Subspace Clustering with Balance Anchors Guidance (FMVSC-BAG). Specifically, FMVSC-BAG integrates the learning processes of anchors, anchor graphs, and labels into a united framework in embedding space seamlessly. This way, they can reinforce each other to improve final clustering performance while eliminating noise and outliers hidden in the original data. Furthermore, FMVSC-BAG constrains the learned labels to preserve the balance structure by a novel balance strategy to promote further that the intrinsic balance structure information of original data can be reserved in the learned anchors and anchor graph. Finally, extensive experiments on six real-life large-scale datasets prove its efficiency and superiority compared to some advanced clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomorrow完成签到 ,获得积分10
1秒前
dryao完成签到,获得积分10
1秒前
Triumph发布了新的文献求助10
1秒前
落寞的冰姬完成签到,获得积分10
1秒前
2秒前
秋风细雨发布了新的文献求助10
2秒前
岳莹晓完成签到 ,获得积分10
2秒前
2秒前
3秒前
如意草丛发布了新的文献求助10
3秒前
Amber完成签到,获得积分10
4秒前
5秒前
秋糜完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
jasmine完成签到,获得积分10
6秒前
余子文发布了新的文献求助10
6秒前
柒月小鱼完成签到 ,获得积分10
6秒前
宫跃然发布了新的文献求助10
6秒前
lingchuan发布了新的文献求助10
7秒前
刘佳敏发布了新的文献求助10
7秒前
7秒前
Awen完成签到,获得积分20
8秒前
小蘑菇应助等风的人采纳,获得10
9秒前
王了了完成签到 ,获得积分10
9秒前
Triumph完成签到,获得积分10
9秒前
9秒前
熙熙发布了新的文献求助10
9秒前
京末完成签到,获得积分10
9秒前
10秒前
超级的千青完成签到 ,获得积分10
10秒前
Cindy165完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
小马甲应助周先生采纳,获得10
11秒前
尘扬发布了新的文献求助30
12秒前
科研通AI5应助Awen采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789000
求助须知:如何正确求助?哪些是违规求助? 3334088
关于积分的说明 10267170
捐赠科研通 3050312
什么是DOI,文献DOI怎么找? 1673974
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570