CT‐based non‐invasive identification of the most common gene mutation status in patients with non‐small cell lung cancer

克拉斯 医学 肿瘤科 肺癌 表皮生长因子受体 内科学 癌症 逻辑回归 突变 无线电技术 放射科 生物 基因 结直肠癌 遗传学
作者
Zongjian Chen,Si Gao,Changwei Ding,Ting Luo,Jiaqi Xu,Shuang Xu,Shu Li
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1872-1882 被引量:1
标识
DOI:10.1002/mp.16744
摘要

Abstract Background Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) are mutually exclusive, and they are two important genes that are most prone to mutation in patients with non‐small cell lung cancer. Purpose This retrospective study investigated the ability of radiomics to predict the mutation status of EGFR and KRAS in patients with non‐small cell lung cancer (NSCLC) and guide precision medicine. Methods Computed tomography images of 1045 NSCLC patients from five different institutions were collected, and 1204 imaging features were extracted. In the training set (EGFR: 678, KRAS: 246), Max‐Relevance and Min‐Redundancy and least absolute shrinkage and selection operator logistic regression were used to screen radiomics features. The combination of selected radiomics features and clinical factors was used to establish the combined models in identifying EGFR and KRAS mutation status, respectively, through stepwise logistic regression. Then, on two independent external validation sets (EGFR: 203/164, KRAS: 123/95), the performance of each model was evaluated separately, and then the overall performance of predicting the two mutation states was calculated. Results In the EGFR and KRAS groups, radiomics signatures comprised 14 and 10 radiomics features, respectively. They were mutually exclusive between the tumors with positive EGFR mutation and those with positive KRAS mutation in imaging phenotype. For the EGFR group, the area under the curve (AUC) of the combined model in the two validation sets was 0.871 (95% CI: 0.821–0.926) and 0.861 (95% CI: 0.802–0.911), respectively, whereas the AUC of the combined model in the two validation sets was 0.798 (95% CI: 0.739–0.850) and 0.778 (95% CI: 0.735–0.821), respectively, for the KRAS group. Considering both EGFR and KRAS, the overall precision, recall, and F1‐score of the combined model in the two validation sets were 0.704, 0.844, and 0.768, as well as 0.754, 0.693, and 0.722, respectively. Conclusions Our study demonstrates the potential of radiomics in the non‐invasive identification of EGFR and KRAS mutation status, which may guide patients with non‐small cell lung cancer to choose the most appropriate personalized treatment. This method can be used when biopsy will bring unacceptable risk to patients with NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
73发布了新的文献求助10
刚刚
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI5应助嘻嘻哈哈采纳,获得10
2秒前
CNS发布了新的文献求助10
2秒前
2秒前
Krapanda发布了新的文献求助10
3秒前
jiafang完成签到,获得积分10
4秒前
4秒前
zhaoxiao发布了新的文献求助10
4秒前
清钰发布了新的文献求助10
5秒前
陈荆洲发布了新的文献求助10
5秒前
5秒前
轻松的小虾米完成签到,获得积分10
6秒前
研友_VZG7GZ应助syy采纳,获得10
7秒前
7秒前
打打应助73采纳,获得10
7秒前
复杂瑛完成签到,获得积分10
8秒前
按揭发布了新的文献求助10
9秒前
盛清让发布了新的文献求助10
9秒前
JaneBing完成签到,获得积分10
10秒前
11秒前
英姑应助Fushuai采纳,获得30
12秒前
lee发布了新的文献求助10
12秒前
14秒前
zhangxueqing完成签到,获得积分10
17秒前
Oops发布了新的文献求助10
18秒前
20秒前
菜小芽完成签到 ,获得积分10
20秒前
21秒前
21秒前
23秒前
24秒前
123发布了新的文献求助10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812678
求助须知:如何正确求助?哪些是违规求助? 3357209
关于积分的说明 10385406
捐赠科研通 3074437
什么是DOI,文献DOI怎么找? 1688770
邀请新用户注册赠送积分活动 812345
科研通“疑难数据库(出版商)”最低求助积分说明 767006