Ethics of Foundation Models in Computational Pathology: Overview of Contemporary Issues and Future Implications

基础(证据) 工程伦理学 计算机科学 伦理问题 数据科学 管理科学 工程类 政治学 法学
作者
Rongsheng Du,Eduard Lloret Carbonell,Jiaxuan Huang,Sheng Liu,Xiaohang Wang,Dinggang Shen,Jing Ke
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3551913
摘要

Artificial intelligence (AI) has profoundly transformed our lives, reshaping industries and impacting nearly every aspect of society over the past few decades. It has recently become even more influential, primarily due to the rise of foundation models representing a new paradigm in AI development. These models, characterized by their large-scale training on vast datasets, have unique capabilities such as emergence and transference, enabling them to generalize across diverse tasks. Since their introduction, foundation models have been increasingly applied in fields such as autonomous driving, computer vision, marketing, finance, industrial robotics, and healthcare. Pathologists worldwide use computational methods to analyze diseases that profoundly impact human well-being, including cancer diagnosis and staging, genetic mutation prediction, and treatment and prognosis forecasting. In this article, we discuss how, despite the promise of foundation models in various applications, their development and application in computational pathology remain challenging due to inherent characteristics such as emergence, homogenization, hallucination, transference, compositionality, and explainability. While powerful, these traits introduce numerous ethical concerns and challenges, impacting safety and reliability, patient privacy, accountability, and equity and fairness in healthcare access. We examine these ethical issues, focusing on key concerns like algorithmic discrimination and misuse, accuracy, privacy breaches, transparency, public accessibility, and accountability. Furthermore, potential solutions to these challenges are analyzed, offering future perspectives on promoting the development and application of more ethical AI and foundation models in computational pathology. These insights aim to guide foundation models toward responsible integration of AI in healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助欣慰的书本采纳,获得10
1秒前
Orange应助懒羊羊采纳,获得10
1秒前
totolo发布了新的文献求助10
1秒前
邱志鸿发布了新的文献求助10
2秒前
起床了吗发布了新的文献求助10
2秒前
找寻四氢叶酸完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
调皮的千万完成签到,获得积分10
3秒前
浮游应助Adan采纳,获得10
3秒前
科研通AI6应助黄锐采纳,获得10
5秒前
5秒前
LEL发布了新的文献求助30
7秒前
起床了吗完成签到,获得积分10
8秒前
8秒前
10秒前
活泼山雁发布了新的文献求助10
11秒前
辛勤的诗柳应助democienceek采纳,获得30
11秒前
rui发布了新的文献求助10
11秒前
12秒前
星辰大海应助坚定的可愁采纳,获得30
14秒前
费慕青发布了新的文献求助40
14秒前
15秒前
LEL关闭了LEL文献求助
16秒前
冰可乐发布了新的文献求助10
18秒前
酥饼完成签到,获得积分10
18秒前
21秒前
21秒前
Zyer完成签到,获得积分10
22秒前
drlq2022完成签到,获得积分10
23秒前
董晨颖完成签到 ,获得积分10
23秒前
24秒前
芙芙芙芙芙完成签到,获得积分10
24秒前
24秒前
秦思远完成签到,获得积分10
25秒前
25秒前
25秒前
打打应助TT采纳,获得10
27秒前
nnnd77发布了新的文献求助10
28秒前
许源智啊发布了新的文献求助10
28秒前
霜糖发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680225
求助须知:如何正确求助?哪些是违规求助? 4056341
关于积分的说明 12543003
捐赠科研通 3750985
什么是DOI,文献DOI怎么找? 2071638
邀请新用户注册赠送积分活动 1100789
科研通“疑难数据库(出版商)”最低求助积分说明 980122