Evaluating Performance of a Deep Learning Multilabel Segmentation Model to Quantify Acute and Chronic Brain Lesions at MRI after Stroke and Predict Prognosis

医学 改良兰金量表 高强度 溶栓 冲程(发动机) 深度学习 磁共振弥散成像 急性中风 流体衰减反转恢复 白质 磁共振成像 放射科 人工智能 内科学 缺血性中风 组织纤溶酶原激活剂 计算机科学 缺血 心肌梗塞 机械工程 工程类
作者
Tianyu Tang,Ying Cui,Chun‐Qiang Lu,Huiming Li,Jiaying Zhou,Xiaoyu Zhang,Yujie Zhou,Ying Zhang,Yi Zhang,You Lin Xu,Yuefeng Li,Shenghong Ju
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240072
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a multilabel deep learning network to identify and quantify acute and chronic brain lesions on multisequence MRI after acute ischemic stroke (AIS) and assess relationships between clinical and model-extracted radiologic features of the lesions and patient prognosis. Materials and Methods This retrospective study included AIS patients from multiple centers (September 2008– October 2022) who underwent MRI and thrombolysis or antiplatelets and/or anticoagulants treatment. A SegResNet-based deep learning model was developed to segment core infarcts and white matter hyperintensity (WMH) burdens on diffusion-weighted imaging and fluid-attenuated inversion recovery images. The model was trained, validated and tested with manual labels ( n = 260, 60, and 40 patients in each dataset, respectively). Radiologic features extracted from the model, including regional infarct size and periventricular and deep WMH volumes and cluster numbers, combined with clinical variables, were used to predict favorable versus unfavorable patient outcomes at 7 days (modified Rankin scale [mRS] score). Mediation analyses explored associations between radiologic features and AIS outcomes within different treatment groups. Results A total of 1,008 patients (mean age, 67.0 ± 11.8 years; 686 male, 322 female) were included. The training and validation dataset comprised 702 patients with AIS, and the two external testing datasets included 206 and 100 patients, respectively. The prognostic model combining clinical and radiologic features achieved AUCs of 0.81 (95% CI: 0.74–0.88) and 0.77 (95% CI: 0.68–0.86) for predicting 7-day outcomes in the two external testing datasets, respectively. Mediation analyses revealed that deep WMH in patients treated with thrombolysis had a significant direct effect (17.7%, P = .01) and indirect effect (10.7%, P = .01) on unfavorable outcomes, as indicated by higher mRS scores, which was not observed in patients treated antiplatelets and/or anticoagulants. Conclusion The proposed deep learning model quantitatively analyzed radiologic features of acute and chronic brain lesions, and extracted radiologic features combined with clinical variables predicted short-term AIS outcomes. WMH burden, particularly deep WMH, emerged as a risk factor for poor outcomes in patients treated with thrombolysis. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
上官若男应助积极访梦采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
小明应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
2秒前
rgsrgrs完成签到,获得积分10
4秒前
英俊的铭应助林宇凡采纳,获得10
5秒前
Lucas应助缥缈凌翠采纳,获得10
5秒前
6秒前
6秒前
英姑应助ZY采纳,获得10
7秒前
菓小柒完成签到 ,获得积分10
7秒前
pyyyyyy完成签到,获得积分20
8秒前
Bing完成签到,获得积分10
9秒前
9秒前
芊芊完成签到 ,获得积分10
10秒前
10秒前
他克莫司完成签到,获得积分10
10秒前
rgsrgrs发布了新的文献求助10
10秒前
pyyyyyy发布了新的文献求助10
10秒前
石石刘完成签到 ,获得积分10
11秒前
幺鸡豆子发布了新的文献求助10
11秒前
HSJ发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495883
求助须知:如何正确求助?哪些是违规求助? 3947764
关于积分的说明 12240949
捐赠科研通 3605432
什么是DOI,文献DOI怎么找? 1983178
邀请新用户注册赠送积分活动 1019797
科研通“疑难数据库(出版商)”最低求助积分说明 912314