已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating Performance of a Deep Learning Multilabel Segmentation Model to Quantify Acute and Chronic Brain Lesions at MRI after Stroke and Predict Prognosis

医学 改良兰金量表 高强度 溶栓 冲程(发动机) 深度学习 磁共振弥散成像 急性中风 流体衰减反转恢复 白质 磁共振成像 放射科 人工智能 内科学 缺血性中风 组织纤溶酶原激活剂 计算机科学 缺血 心肌梗塞 机械工程 工程类
作者
Tianyu Tang,Ying Cui,Chun‐Qiang Lu,Huiming Li,Jiaying Zhou,Xiaoyu Zhang,Yujie Zhou,Ying Zhang,Yi Zhang,You Lin Xu,Yuefeng Li,Shenghong Ju
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240072
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a multilabel deep learning network to identify and quantify acute and chronic brain lesions on multisequence MRI after acute ischemic stroke (AIS) and assess relationships between clinical and model-extracted radiologic features of the lesions and patient prognosis. Materials and Methods This retrospective study included AIS patients from multiple centers (September 2008– October 2022) who underwent MRI and thrombolysis or antiplatelets and/or anticoagulants treatment. A SegResNet-based deep learning model was developed to segment core infarcts and white matter hyperintensity (WMH) burdens on diffusion-weighted imaging and fluid-attenuated inversion recovery images. The model was trained, validated and tested with manual labels ( n = 260, 60, and 40 patients in each dataset, respectively). Radiologic features extracted from the model, including regional infarct size and periventricular and deep WMH volumes and cluster numbers, combined with clinical variables, were used to predict favorable versus unfavorable patient outcomes at 7 days (modified Rankin scale [mRS] score). Mediation analyses explored associations between radiologic features and AIS outcomes within different treatment groups. Results A total of 1,008 patients (mean age, 67.0 ± 11.8 years; 686 male, 322 female) were included. The training and validation dataset comprised 702 patients with AIS, and the two external testing datasets included 206 and 100 patients, respectively. The prognostic model combining clinical and radiologic features achieved AUCs of 0.81 (95% CI: 0.74–0.88) and 0.77 (95% CI: 0.68–0.86) for predicting 7-day outcomes in the two external testing datasets, respectively. Mediation analyses revealed that deep WMH in patients treated with thrombolysis had a significant direct effect (17.7%, P = .01) and indirect effect (10.7%, P = .01) on unfavorable outcomes, as indicated by higher mRS scores, which was not observed in patients treated antiplatelets and/or anticoagulants. Conclusion The proposed deep learning model quantitatively analyzed radiologic features of acute and chronic brain lesions, and extracted radiologic features combined with clinical variables predicted short-term AIS outcomes. WMH burden, particularly deep WMH, emerged as a risk factor for poor outcomes in patients treated with thrombolysis. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助organoid elegan采纳,获得10
1秒前
barn完成签到 ,获得积分10
1秒前
打打应助刘瀚臻采纳,获得10
1秒前
传奇3应助ACE采纳,获得10
1秒前
TIDUS完成签到,获得积分10
2秒前
徐per爱豆完成签到 ,获得积分10
3秒前
Hello应助lonny采纳,获得10
3秒前
ryanfeng完成签到,获得积分0
3秒前
坦率人杰发布了新的文献求助10
3秒前
Whiaper发布了新的文献求助10
4秒前
hhhhuo完成签到,获得积分10
4秒前
小二郎应助AixGnad采纳,获得10
6秒前
多情的忆之完成签到,获得积分10
6秒前
科研通AI5应助Raven采纳,获得10
6秒前
7秒前
山东老铁完成签到 ,获得积分10
8秒前
a36380382完成签到,获得积分10
9秒前
aikeyan完成签到 ,获得积分10
9秒前
sunny完成签到,获得积分10
10秒前
快乐的小蘑菇完成签到,获得积分10
11秒前
12秒前
Raven完成签到,获得积分10
12秒前
hairgod完成签到,获得积分10
15秒前
domingo完成签到,获得积分10
16秒前
TIDUS完成签到,获得积分10
16秒前
zzz发布了新的文献求助10
17秒前
17秒前
17秒前
薯条完成签到 ,获得积分10
19秒前
PEi完成签到,获得积分10
21秒前
江氏巨颏虎完成签到,获得积分10
21秒前
默默发布了新的文献求助10
23秒前
艺术家发布了新的文献求助10
24秒前
默默完成签到,获得积分10
27秒前
MDW发布了新的文献求助10
29秒前
悄悄拔尖儿完成签到 ,获得积分10
29秒前
莫名是个小疯子给Lsy的求助进行了留言
30秒前
30秒前
leisj完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076531
求助须知:如何正确求助?哪些是违规求助? 4296017
关于积分的说明 13386278
捐赠科研通 4118073
什么是DOI,文献DOI怎么找? 2255117
邀请新用户注册赠送积分活动 1259644
关于科研通互助平台的介绍 1192567