A multi-modal model integrating MRI habitat and clinicopathology to predict platinum sensitivity in patients with high-grade serous ovarian cancer: a diagnostic study

医学 逻辑回归 浆液性液体 情态动词 人工智能 卵巢癌 队列 回顾性队列研究 机器学习 放射科 病理 内科学 癌症 计算机科学 化学 高分子化学
作者
Qiu Bi,Conghui Ai,Qingyue Meng,Qinqing Wang,Haiyan Li,Ao Zhou,Wenwei Shi,Lei Ying,Yunzhu Wu,Yang Song,Zhibo Xiao,Haiming Li,Jinwei Qiang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002524
摘要

Background: Platinum resistance of high-grade serous ovarian cancer (HGSOC) cannot currently be recognized by specific molecular biomarkers. We aimed to compare the predictive capacity of various models integrating MRI habitat, whole slide images (WSIs), and clinical parameters to predict platinum sensitivity in HGSOC patients. Methods: A retrospective study involving 998 eligible patients from four hospitals was conducted. MRI habitats were clustered using K-means algorithm on multi-parametric MRI. Following feature extraction and selection, a Habitat model was developed. Vision Transformer (ViT) and multi-instance learning were trained to derive the patch-level prediction and WSI-level prediction on hematoxylin and eosin (H&E)-stained WSIs, respectively, forming a Pathology model. Logistic regression (LR) was used to create a Clinic model. A multi-modal model integrating Clinic, Habitat, and Pathology (CHP) was constructed using Multi-Head Attention (MHA) and compared with the unimodal models and Ensemble multi-modal models. The area under the curve (AUC) and integrated discrimination improvement (IDI) value were used to assess model performance and gains. Results: In the internal validation cohort and the external test cohort, the Habitat model showed the highest AUCs (0.722 and 0.685) compared to the Clinic model (0.683 and 0.681) and the Pathology model (0.533 and 0.565), respectively. The AUCs (0.789 and 0.807) of the multi-modal model interating CHP based on MHA were highest than those of any unimodal models and Ensemble multi-modal models, with positive IDI values. Conclusion: MRI-based habitat imaging showed potentials to predict platinum sensitivity in HGSOC patients. Multi-modal integration of CHP based on MHA was helpful to improve prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
damaaaaaa发布了新的文献求助30
1秒前
xingzai101完成签到,获得积分10
1秒前
共享精神应助欧小嘢采纳,获得10
1秒前
玛卡巴卡完成签到,获得积分10
1秒前
cd发布了新的文献求助10
2秒前
隐形曼青应助Evian79167采纳,获得10
2秒前
轻松背包完成签到,获得积分10
2秒前
宋佳顺发布了新的文献求助10
2秒前
bsgmsf完成签到,获得积分10
2秒前
领导范儿应助欧阳铭采纳,获得10
2秒前
不知所措的咪完成签到,获得积分10
2秒前
guo发布了新的文献求助10
3秒前
江峰完成签到,获得积分10
3秒前
gggggd完成签到,获得积分10
4秒前
dcsw发布了新的文献求助10
4秒前
无花果应助goku采纳,获得10
4秒前
北北北应助梁家孟采纳,获得10
5秒前
王檬发布了新的文献求助10
5秒前
Jenny发布了新的文献求助10
5秒前
巧可脆脆发布了新的文献求助20
5秒前
Akim应助果蝇之母采纳,获得10
5秒前
桐桐应助如水从平采纳,获得10
5秒前
6秒前
刘大干发布了新的文献求助10
6秒前
Ariels完成签到,获得积分10
7秒前
damaaaaaa完成签到,获得积分20
7秒前
7秒前
kingwill应助泠涣1采纳,获得20
8秒前
乐乐应助hhhh采纳,获得10
8秒前
傅ruoyu完成签到,获得积分10
9秒前
9秒前
11秒前
小白应助一独白采纳,获得10
11秒前
鱼儿与蟹儿完成签到,获得积分10
11秒前
HAO完成签到,获得积分10
11秒前
飞鱼发布了新的文献求助10
12秒前
脑洞疼应助DT采纳,获得10
12秒前
Jasper应助巧可脆脆采纳,获得10
12秒前
Kyr发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463841
求助须知:如何正确求助?哪些是违规求助? 3926342
关于积分的说明 12184337
捐赠科研通 3579066
什么是DOI,文献DOI怎么找? 1966390
邀请新用户注册赠送积分活动 1005037
科研通“疑难数据库(出版商)”最低求助积分说明 899444