亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic review of multimodal fake news detection on social media using deep learning models

社会化媒体 假新闻 深度学习 计算机科学 数据科学 人工智能 互联网隐私 万维网
作者
Maged Nasser,Noreen Izza Arshad,Abdulalem Ali,Hitham Alhussian,Faisal Saeed,Aminu Da’u,Ibtehal Nafea
出处
期刊:Results in engineering [Elsevier]
卷期号:26: 104752-104752 被引量:13
标识
DOI:10.1016/j.rineng.2025.104752
摘要

The volume of data circulating from online sources is growing rapidly and comprises both reliable and unreliable information published through many different sources. Researchers are making plausible efforts to develop reliable methods for detecting and eliminating fake web news. Deep learning (DL) methods play a vital role in addressing various fake news detection problems and are found to perform better compared to conventional approaches, making them state-of-the-art in this field. This paper provides a comprehensive review and analysis of existent DL-based models for multimodal fake news detection, focusing on diverse aspects, including user profiles, news content, images, videos, and audio data. This study considered the latest articles within the last seven years, starting from 2018 to 2025, and about 963 quality articles were obtained from the journals and conferences selected for this study. Subsequently, 121 studies were chosen for our SLR after careful screening of the abstract and the full-text eligibility analysis. The findings showed that the Transformer models and Recurrent Neural Networks (RNNs) are the most popular deep learning techniques for detecting multimodal fake news, followed by the Convolutional Neural Networks (CNNs) techniques. The Twitter and Weibo datasets are the two most frequently used standard datasets, and the most frequently used metrics to evaluate the performance of these models are the accuracy, precision, recall, and F-scores. In conclusion, the limitations of the current methods were summarized and some exciting possibilities for future research were highlighted, including designing robust multilingual fake news detection systems, hybridization of deep learning models to enhance detection accuracy, integration of explainable AI (XAI), and facilitating real-time fake news detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
俭朴蜜蜂完成签到 ,获得积分10
34秒前
ceeray23发布了新的文献求助20
38秒前
Orange应助ceeray23采纳,获得20
52秒前
1分钟前
狗头发布了新的文献求助10
1分钟前
会飞的蜗牛完成签到,获得积分10
1分钟前
WerWu完成签到,获得积分0
1分钟前
zzy完成签到 ,获得积分10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
鬼笔环肽完成签到,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
3分钟前
baibai发布了新的文献求助10
3分钟前
3分钟前
3分钟前
清秀灵薇完成签到,获得积分10
3分钟前
jerry完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
欣欣完成签到 ,获得积分10
5分钟前
houshyari完成签到,获得积分10
5分钟前
一彤展翅完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
浮游应助ali777采纳,获得10
6分钟前
ali777完成签到,获得积分20
6分钟前
科研通AI2S应助GIA采纳,获得10
6分钟前
444完成签到,获得积分10
6分钟前
7分钟前
小房子完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
8分钟前
乐乐应助风中巧曼采纳,获得10
8分钟前
8分钟前
风中巧曼发布了新的文献求助10
8分钟前
可爱的函函应助LIXI采纳,获得30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407926
求助须知:如何正确求助?哪些是违规求助? 4525379
关于积分的说明 14101723
捐赠科研通 4439244
什么是DOI,文献DOI怎么找? 2436671
邀请新用户注册赠送积分活动 1428645
关于科研通互助平台的介绍 1406740